Докажем теперь, что данное преобразование будет гомотетией с центром в т. М и коэффициентом lk. Возьмем произвольную точку Е, пусть
, а . Докажем, что (рис. 2). Разложим векторы и по векторам и . По правилу треугольника, , а . Ранее мы выразили вектор через вектор : , тогда вектор выражается через вектор следующим образом: . Вектор при гомотетии переходит в вектор , тогда . Значит, . Теперь приведем подобные слагаемые и разложим вектор по векторам и , после этого получим . Вектор при гомотетии переходит в вектор , значит, , а вектор вновь выразим через , тогда . Приведем подобные слагаемые, получим . По правилу треугольника , следовательно . Таким образом, мы показали, что преобразование произвольную точку E переводит в точку G такую, что , следовательно, это преобразование – гомотетия с центром в точке М и коэффициентом lk.. (23)
Сейчас найдем преобразование . , а это по формуле (23) равняется
, . Далее применяя формулу (23), получаем , . Выразим вектор через вектор . По правилу треугольника, . Мы уже знаем, что , тогда . Приведем подобные слагаемые, получим . Так как , то . Значит, . Таким образом,. (24)
Рассмотрим
. По теореме о неподвижных точках, прямая – неподвижная прямая преобразования , значит, это осевая симметрия с осью m.. (25)
. (26)
Рассмотрим
. По теореме о неподвижных точках, неподвижными точками преобразования являются образы неподвижных точек движения f. Докажем, что это – движение. . Рассмотрим точки А и L, |AL| = d. Пусть при гомотетии они переходят соответственно в точки В и М, тогда |BM| = d/k. При движении f точки В и М переходят соответственно в точки С и N, тогда |CN| = d/k, т.к. движение сохраняет расстояния между точками. Пусть при гомотетии точки С и N переходят соответственно в точки D и P, |DP| = kd/k = d. Мы получили, что преобразование сохраняет расстояния между точками, значит, это движение, неподвижными точками которого являются образы неподвижных точек движения f, а т.к. вид движения определяется его неподвижными точками, то - движение того же вида, что и f.Рассмотрим
, где f – подобие. Известно, что подобие – это композиция движения и гомотетии, тогда , а это, по формулам (2), равняется . Как было доказано в 5.3, - движение того же вида, что и g, а по формуле (24) . Следовательно, - подобие того же вида, что и f. Если f , то. (27)
Пусть подобие – это композиция движения g и гомотетии
, то движение f под подобием – это . В силу ассоциативности композиции преобразований, . По доказанному в п. 5.3 = f1 - движение того же вида, что и f, а его неподвижные точки – образы неподвижных точек движения f при гомотетии . Тогда . Но f1g = f2 – движение того же вида, что и f1, а его неподвижные точки – образы неподвижных точек движения f1 при движении g. Тогда - движение того же вида, что и f, а его неподвижные точки – образы неподвижных точек движения f при подобии .