Смекни!
smekni.com

Три задачи по теории чисел (стр. 3 из 4)

где α и β - произвольные.

Т.к. (13) - тождество, то решением уравнения (1) a3 = b2 + cd2 (случай, когда(n=3)), являются:

а = α2 + cβ2 b = α3 - 3cαβ2

d = 3α2β - cβ3, где α и β - произвольные числа, ч.т.д..

Утверждение 2. (n = 2;3;4;5;6;7)

Уравнение an=b2+cd2 (1), где c = const, имеет следующее решение:

a=α2+cβ2

b=αn3n-2β25c2αn-4β47c3αn-6β6+…

d=nαn-1β-κ4n-3β36c2αn-5β58c3αn-7β7+…,

где κi - биноминальные коэффициенты степени n, где i = 3;4;5;6;7;8;…;

κ1=1 - первые два биноминальных коэффициента в

κ2= п биноме Ньютона при αn и αn-1β;

n - натуральная степень (n>1).

Доказательство

(методом анализа частных случаев, когда n = 2;3;4;5;6;7)

I этап

Рассмотрим частные случаи.

Нам уже известны решения уравнения (1) an=b2+cd2 для степени n=2 и n=3 (смотри доказательствоУтверждение1).

n = 2

(2) a2 = b2 + cd2, где

a=α2+cβ2

b=α2-cβ2 (2') - при этих значениях a, b и c уравнение (2) превращается в d=2αβ тождество (α2+cβ2)2 ≡ (α2-cβ2)2+c(2αβ)2 (2'').

n=3

(3) a3=b2+cd2,

где

a=α2+cβ2

b=α3-3cαβ2 (3') - при этих значениях a,b и c уравнение (3) превращается в d=3α2β-cβ3 тождество (α2+сβ2)3 ≡ (α3-3сαβ2)2+с(3α2β-сβ3)2 (3'').

Пример: при α = β = 1 и c=2 имеем верное равенство:

(1+2·1)3 = (1-3·2·1)2 + 2·(3-2·1)2

33 ≡ 52 +2·12

Напомню, что при нахождении решения уравнения (1) для степени n = 3 мы в доказательстве Утверждения1опирались на тождество (2)

(x2+cy2)(u2+cυ2) ≡ (xu-cyυ)2+c(xυ+yu)2,

и на решение уравнения (1) второй степени, т.е. степени на единицу меньшую. Аналогичным методом можно найти решение уравнения (1) для других натуральных степеней n.

n=4

Пусть в тождестве (2) (x2+cy2)(u2+cυ2) ≡ (xu-cyυ)2+c(xυ+yu)2

a = x2+cy2

a3 = u2+cυ2 (5)

тогда имеем соотношение (x2+cy2)3 = u2+cυ2 (6), которое есть ничто иное, как уравнение (1) с n=3: a3 = b2 + cd2 (3) (см. случай n=3).

Учитывая (3') и (6), получаем:

а = x2+cy2 = α2+cβ2 (7')

u = α3-3cαβ2 (7) (7'')

υ = 3α2β-cβ3 (7''')

Учитывая формулы (10) и (11) в доказательстве Утверждения1 (x=α , y=β (8)) при нахождении решения уравнения (1) для n=3, автоматически распространим его и при нахождении решения уравнения (1) для n>3. Тогда, с учетом (5) тождество (2) принимает вид:

a4 = (xu-cyυ)2 + c(xυ+yu)2 => a4 = b2 + cd2 (9)

где

a = x2+cy2

b = xu-cyυ (10)

d = xυ+yu

Учитывая (8), (7'),…, (7'''), запишем a, b, d в системе (10) через α и β:

a = α2+cβ2

b =xu-cyυ=α(α3-3cαβ2)-cβ(3α2β-cβ3)=α4-3cα2β2-3cα2β2+c2β4 = α4-6cα2β2+c2β4

d = xυ+yu=α(3α2β-cβ3)+β(α3-3cαβ2)=3α3β-cαβ3+βα3-3cαβ3 = 4α3β-4cαβ3

Итак, уравнение (9) a4=b2+cd2 имеет следующее решение:

a = α2 + cβ2

b = α4-6cα2β2+c2β4 (11) и соответствующее тождество:
d = 4α3β - 4cαβ3

(12) (α2+сβ2)4≡(α4-6сα2β22β4)2+с(4α3β-4сαβ3)2

Пример:

при α = β = 1 и с = 2 => 34 = (1-12+4)2+2·(4-8)2 => 81 ≡ 49 + 32.

n=5

Рассуждения аналогичны.

Пусть в тождестве (2) (x2+cy2)(u2+cυ2) ≡ (xu-cyυ)2+c(xυ+yu)2

a = x2+cy2 (13)

тогда получаем соотношение:

a4 = u2+cυ2

(x2+cy2)4 = u2+cυ2 которое есть ничто иное, как уравнение (1) с n=4: (9) a4=b2+cd2) (см. случай n=4), решение которого есть система (11). Отсюда:

a =x2+cy22+cβ2

u =α4-6cα2β2+c2β4 (14)

υ =4α3β-4cαβ3

С учетом (13) тождество (2) принимает вид:

a5 = (xu-cyυ)2 + c(xυ+yu)2 => a5=b2+cd2 (15)

где

a = x2+cy2

b = xu-cyυ (16)

d = xυ+yu

Учитывая (8) (x=α , y=β) и (14), запишем a,b,d в системе (16) через переменные α и β:

a = α2 + cβ2

b = xu-cyυ =α(α4-6cα2β2+c2β4)-cβ·(4α3β-4cαβ3)=

5-6cα3β2+αc2β4-4cα3β2+4c2αβ4 = α5-10cα3β2+5c2αβ4

d = xυ+yu =α(4α3β-4cαβ3)+β(α4-6cα2β2+c2β4)=

=4α4β-4cα2β34β-6cα2β3+c2β5 = 5α4β-10cα2β3+c2β5

Итак, уравнение (15) a5=b2+cd2 имеет следующие решения:

a=α2+cβ2

d=5α4β-10cα2β3+c2β5 (17)

b=α5-10cα3β2+5c2αβ4

и соответствующее тождество:

2+cβ2)5=(α5-10cα3β2+5c2αβ4)2+c(5α4β-10cα2β3+c2β5)2 (18)

Пример:

при α=β=1 и с=2 =>

=> 35 = (1-20+20)2 +2·(5-20+4)2 = 12+2·112 => 35 = 12 +2·112= 243

n=6

Решение уравнения a6=b2+cd2 (19) находятся аналогично. Доказательство опирается на известные решения уравнения предыдущей степени, т.е. n=5. Уравнение (19) имеет следующее решение:

a = α2 + cβ2

b = α6 - 15cα4β2 + 15c2α2β4 - c3β6 (20)

d = 6α5β - 20cα3β3 + 6c2α

и соответствующее тождество:

2 + cβ2)6 = (α6 - 15cα4β2 + 15c2α2β4 - c3β6)2 + c(6α5β - 20cα3β3 + 6c2αβ5)2 (21)


Пример:

при α = β = 1 и c = 2 имеем:

36=(1- 30 + 60 - 8)2 + 2(6 – 40 + 24)2 =

= 232 + 2 × (-10)2 => 36 ≡ 232 + 2 × (-10)2 ≡ 725.

n=7

Аналогичные рассуждения приводят к тому, что уравнение

(22) a7 = b2 + cd2 имеет следующее решение:


a = α2 + cβ2

b = α7 - 21cα5β2+ 35c2α3β4 - 7c3αβ6 (23)

d = 7α6β - 35cα4β3 + 21c2α2β5 – c3β

а соответствующее тождество:

(24) (α2 + cβ2)7

≡(α7- 21cα5β2 + 35c2α3β4-7c3α6β7)2 +24+ c(7α6β - 35cα4β3 + 21c2α2β5 – c3β7)

Пример:

при α = β = 1 и c = 2 имеем:

37 = (1- 42 + 140 - 56)2 + 2(7 – 70 + 84 - 8)2 =

= 432 + 2×132 => 37≡ 432 + 2×132 ≡ 2187.

ІІ этап

Получение общего решения уравнения

(1) an=b2 + cd2

(Напомним, доказательство не строгое, опирается на частные случаи)

Выпишем все тождества, полученные для каждой степени

n = 2; 3; 4; 5; 6; 7;

n = 2

2+cβ2)2 = (α2 – cβ2)2 + c(2αβ)2

n = 3

2+cβ2)3 = (α3 - 3cαβ2)2+c(3α2β – cβ3)2

n = 4

2+cβ2)4 = (α4 - 6cα2β2+c2β4)2+c(4α3β – 4cαβ3)2

n = 5

2+cβ2)5 = (α5 - 10cα3β2+5c2αβ4)2+c(5α4β – 10cα2β3+c2β5)2

n = 6

2+cβ2)6 = (α6 - 15cα4β2+15c2α2β4-c3β6)2+c(6α5β – 20cα3β3+6c2αβ5)2

n = 7

2+cβ2)7 = (α7 - 21cα5β2+35c2α3β4-7c3αβ6)2+c(7α6β –

-35cα4β3+21c2α2β5-c3β7)2

Анализируя эти тождества, приходим к общему тождеству общего уравнения

an = b2 + cd2 (1) :

2 + cβ2)n = (αn – k3n-2β2 + k5c2αn-4β4 – k7c3αn-6β6 +…)2 +

+ c(nαn-1β – k4n-3β3 + k6c2αn-5β5 – k8c3αn-7β7)2 (25)