где
- предел текучести при чистом сдвиге (также постоянная величина для каждого материала).В общем случае плоского или объемного напряженных состояний экспериментально невозможно установить условия пластичности для бесконечного множества соотношений между составляющими напряжений. Поэтому условие пластичности для сложного напряженного состояния устанавливается гипотетическим путем с последующей экспериментальной проверкой.
Рассмотрим два условия пластичности, наиболее часто используемые в теории пластичности и достаточно правильно определяющие переход материала из упругого состояния в пластическое.
Первое условие – условие пластичности Треска - Сен-Венана – гласит, что пластические деформации в материале возникают, когда максимальные касательные напряжения достигают значения, равного пределу текучести при чистом сдвиге:
. (1.5.2)Максимальные касательные напряжения определяются формулой
Подставляя сюда главные напряжения при линейном напряженном состоянии (1.5.1), в момент появления пластических деформаций получаем
. (1.5.4)Сравнивая формулы (1.5.2) и (1.5.4) заключаем, что
. (1.5.5)После подстановки выражений ( 1.5.3 ) и ( 1.5.5 ) в формулу ( 1.5.1 ) приходим к условию пластичности Треска-Сен-Венана в таком виде:
. (1.5.6)Второе условие – условие пластичности Мизеса-Генки – гласит, что пластические деформации в материале возникают, когда интенсивность касательных напряжений достигает некоторого постоянного для некоторого материала значения:
. (1.5.7)Определим эту постоянную из результатов испытаний при простом растяжении. Подставляя в формулу
главные напряжения (1.5.1), найдем значение интенсивности касательных напряжений при растяжении в момент появления пластических деформаций:
. (1.5.9)Сравнивая формулы (1.5.9) и (1.5.7), заключаем, что постоянная
. (1.5.10)Подставляя выражения (1.5.8) и (1.5.10) в формулу (1.5.7), приходим к условию пластичности Губера-Мизеса-Генки в такой форме:
(1.5.11)Или
.Оба рассмотренных условия пластичности дают весьма близкие результаты. Эксперименты несколько лучше подтверждают условие Губера-Мизеса-Генки. Кроме того, это условие удобнее с математической точки зрения, так как выражение
через шесть составляющих напряжений очень громоздко, а выражается через эти составляющие сравнительно просто. Поэтому в теории пластичности чаще используется условие пластичности Губера-Мизеса-Генки.Ассоциированный закон
Пластические деформации возникают при активном нагружении материала и не возникают при нейтральном нагружении и разгрузке.
Соотношения связи
в теории пластичности формулируется обычно на основе принципа максимума Мизеса: при фиксированных параметрах для любого данного значения компонент приращений пластической деформации имеет место неравенство , (1.5.12)где
- действительные компоненты напряжения, а - компоненты любого возможного напряженного состояния, допускаемого данной функцией нагружения: .Из принципа максимума Мизеса следует ассоциированный закон течения – закон направленности приращения пластической деформации (или скорости пластической деформации) по градиенту к поверхности нагружения.
В самом деле, предположим, что приращение пластической деформации
не зависит от приращения напряжений.Рассмотрим рис. 1.7. Согласно (1.5.12) угол между векторами
и должен быть не тупым. В силу произвольности вектора , не выходящего за поверхность нагружения , неравенство (1.5.12) может быть выполнено только в случае ортогональности к , откуда имеем или , , . (1.5.13)Выражение (1.5.13) определяет ассоциированный закон пластического течения.
ГЛАВА II. ЗАДАЧА УПРУГОПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ ТРУБЫ
2.1 Механическая постановка задачи
Цель данной задачи – определить выражения для компонент напряжений, скоростей перемещений и скоростей деформации.
Методом решения задачи является метод малого параметра, в качестве которого выбирается величина
, характеризующая возмущения границ трубы.Приведем основные обозначения:
- компоненты напряжений, - компоненты деформаций, - радиальное и тангенциальное перемещения,- внутренний и внешний радиусы осесимметричной трубы,
- полярный радиус, - полярный угол, - полярный радиус границы пластической зоны, - модуль сдвига.Индекс
указывает на принадлежность компонента к пластической зоне, индекс - к упругой.Все величины, имеющие размерность напряжения, отнесём к величине предела текучести
, величины, имеющие размерность длины, - к внешнему радиусу .Обозначим:
- внешний радиус;2.2 Математическая постановка задачи
Предположим, что искомое решение зависит от некоторого параметра
. Будем искать решение в виде рядов по степеням этого параметра , , , , , ,