Смекни!
smekni.com

Сравнительный анализ численных методов (стр. 2 из 6)

При решении мы получили следующие результаты:

Условие

, где n=5 выполнено, необходимая точность достигнута, поэтому итерационный процесс можно прекратить.

Добиться указанной точности нам удалось на 5-ой проведенной итерации.

1.4 Практическое применение метода касательных для решения уравнений

В качестве примера решим вышеупомянутое уравнение методом касательных:


=0,001.

Начальное условие:

(выбрали по тому же правилу, которое использовали для решения уравнения методом хорд
)

Применим формулу

;

<
- необходимая точность достигнута, итерационный процесс можно останавливать.

Добиться указанной точности нам удалось на 3-й проведенной итерации


Рисунок 4. График функции на отрезке [

;
]

Наименьшим полученным отрезком, в котором содержится корень уравнения является

[

;
].

Значения исходной функции на концах этого отрезка

f(

)=-0,0001391

f(

)=0,000000033

Как мы видим, на каждой итерации объем вычислений в методе касательных больший, чем в методе хорд, так как приходится находить не только функции F(х) , но и ее производной. Однако скорость сходимости значительно выше в методе касательных: в методе касательных условие сходимости выполнилось на 3- м шаге, а в методе хорд на 5-м.


Рисунок 5. График функции

для метода касательных

Рисунок 6. График функции

для метода хорд

Говоря о функции х=

, - выбрав начальное приближение х0 (для метода касательных), х0 и x1(для метода хорд) строится последовательность хn стремящаяся к
и условием сходимости здесь является
,т.е. тангенс угла наклона касательной должен быть меньше 1(угол должен составлять менее 45 градусов). Исходя из рисунков 5,6 очевидно что условие сходимости (
) итерационной процедуры было выполнено.

1.5 Программная реализация итерационных методов

Рисунок 7. Решение уравнения методом хорд

Рисунок 8. Решение уравнения методом касательных


Раздел 2. Интерполирование

Одним из основных типов точечной аппроксимации является интерполирование. Оно состоит в следующем: для данной функции

строим интерполирующую функцию φ(х), принимающую в заданных точках
, те же значения
, что и функция
, т.е.

При этом предполагается, что среди значений

нет одинаковых, т.е.
при
. Точки
называются узлами интерполяции.

Рисунок 9. Интерполяция.

Таким образом, близость интерполирующей функции (сплошная линия) к заданной функции состоит в том, что их значения совпадают на заданной системе точек. Интерполирующая функция φ(х) может строиться сразу для всего рассматриваемого интервала измерения х или отдельно для разных частей этого интервала. В первом случае говорят о глобальной интерполяции, во втором – о кусочной (или локальной) интерполяции.


2.1 Многочлен Лагранжа

Рассмотрим случай глобальной интерполяции, т.е. построение интерполяционного многочлена, единого для всего отрезка

.

Будем искать интерполяционный многочлен в виде линейной комбинации многочленов степени n:

При этом потребуем, чтобы каждый многочлен

обращался в нуль во всех узлах интерполяции, за исключением одного (i-го), где он должен равняться единице. Этим условиям при i=0 отвечает многочлен вида

.

По аналогии получим

при i=1

,

при i=2

,

,

Подставляя полученные выражения в

,

находим

.

Эта формула определяет интерполяционный многочлен Лагранжа.

Обратное интерполирование заключается в установлении зависимости

. Задача обратного интерполирования заключается в том, чтобы по заданному значению функции y определить соответствующее значение аргумента x.

Функция выглядит следующим образом:

Ln(y)=

2.2 Практическое применение метода интерполяции для решения уравнений

Для исследования примем ту же функцию , что и в предыдущем разделе:


Рисунок 10. График функции

В пункте 1.2 для этой функции был выбран отрезок [3,4] и проверен на единственность корня.

Примем

х0=-0.1

х1=0.0125

х2=0.125

х3=0.237

х4=0.35.


Тогда многочлен Лагранжа будет иметь вид:

Вычислим значения функции (многочлена Лагранжа) в узлах интерполяции и исходной функции в тех же точках.

=-1.571
=-1.571
=-0.9245293
=-0.9245293
=-0.2011719
=-0.2011719
=-0.6076152
=-0.6076152
=1.510375
=1.510375

Как видно в узлах интерполяции значение интерполяционного многочлена Лагранжа и исходной функции равны.