Вычислим значения
Для сравнения выберем точки: середина крайней части отрезка х=0.29375 и середина части, содержащей точку (a+b)/2 - х=0.18125.
Результаты для точки находящейся в середине отрезка начинают различаться на 13 знаке после запятой; для крайней точки - на 14-ом знаке. Следовательно, точность данного метода достаточно велика.
Рисунок 11. График исходной функции и интерполяционного многочлена.
Используя эти же узловые точки проведем обратную интерполяцию и определим значение х при у=0.
Y=0
L4(0)=0,1541658
Данный результат очень близок к найденным раннее решениям , методом хорд и методом касательных и совпадает с ними до 5-го знака после запятой.
Решение найденное методом хорд: х=
Решение найденное методом касательных: х=
Раздел 3. Итерационные методы решения систем линейных алгебраических уравнений
К решению систем линейных уравнений сводятся многочисленные практические задачи. Методы решения линейных уравнений делятся на две группы – прямые и итерационные. Для систем уравнений средней размерности чаще всего используют прямые методы. Они дают решение после выполнения заранее известного числа операций. Эти методы сравнительно просты и наиболее универсальны. Но вместе с тем эти методы имеют ряд недостатков. Как правило, они требуют хранения в оперативной памяти компьютера сразу всей матрицы, и при больших значениях расходуется много места в памяти. Существенным недостатком прямых методов является также накапливание погрешностей в процессе решения, поскольку вычисления на любом этапе используют результаты предыдущих операций.
Итерационные методы в этом отношении предпочтительнее. Они требуют хранения в памяти машины не всей матрицы системы, а лишь нескольких векторов с n компонентами. Погрешности окончательных результатов при использовании итерационных методов не накапливаются, поскольку точность вычислений в каждой итерации определяется лишь результатами предыдущей итерации и практически не зависит от ранее выполненных вычислений.
Применение итерационных методов для качественного решения СЛАУ требует серьёзного использования её структуры, специальных знаний и определённого опыта. Именно поэтому разработано большое число итерационных средств, каждый из которых ориентирован на решения сравнительно узкого числа задач, и существует довольно мало программ, реализующих эти методы. В курсе математического обеспечения САПР мы рассмаривали следующие итерационные методы решения СЛАУ: метод простой итерации, метод Зейделя.
3.1 Метод простой итерации
Этот метод широко используется для численного решения уравнений и их систем различных видов. Рассмотрим применение метода простой итерации к решению систем линейных уравнений.
Запишем исходную систему уравнений в векторно-матричном виде
x=Bx+c,
где В- квадратная матрица с элементами bij (I,j=1,2,3…m) c- вектор-столбец с элементами ci (i=1,2,3…m)
В развёрнутой форме записи система имеет вид:
x1=b11x1+b12x2+b13x3+…b1mxm+c1
x2=b21x1+b22x2+b23x3+…b2mxm+c1
x3=b31x1+b32x2+b33x3+…b1mxm+c3
xm=bm1x1+bm2x2+bm3x3+…bmmxm+cm
Операция приведения системы к виду, удобному для итераций не является простой и требует специальных знаний. В некоторых случаях операция преобразования не имеет смысла, так как система бывает уже приведена к удобному для итераций виду.
Самым простым способом приведения системы к такому виду является тот, что описан ниже:
И первого уравнения системы выразим x1:
x1=a11-1(b1-a12x2- a13x3-…- a1mxm)
Из второго уравнения системы выразим x2:
x2=a22-1(b2-a21x2- a23x3-…- a2mxm)
xm=amm-1(bm-am1x2- am3x3-…- am-1mxm-1)
В результате получим систему:
x1=0+ b12x2+ b13x3-…+ b1m-1xm-1+ b1mxm+c1
x2= b21x2+0 +b23x3+…+ b2m-1xm-1+ b2mxm+c2
xm= bm1x1+ bm2x20 +bm3x3+…+ bmm-1xm-1+ 0+cm
в которой, на главной диагонали матрицы B находятся нулевые элементы, стальные элементы выражаются по формулам:
bij=-aij/aii ci=bi/aii (i,j=1,2,3…m, i<>j)
Итерационный процесс продолжается до тех пор , пока значения х1(k) , х2(k) , х3(k) не станут близкими с заданной погрешностью к значениям х1(k-1) , х2(k-1) , х3(k-1) .
Для возможности выполнения данного преобразования необходимо, чтобы диагональные элементы матрицы А были ненулевыми.
Часто систему преобразуют к виду x=x-
Описание метода:
Выберем начальное приближение x0=( x01 x02… x0m)
подставляя его в праву часть системы
x=Bx+c,
и вычисляя полученное выражение, находим первое приближение:
x1=Bx0+c
на втором шаге подставляем приближение x1 в правую часть той же системы, получим второе приближение:
x2=Bx1+c
Продолжая этот процесс далее, получим последовательность x1 x2 x3… xn приближений, вычисляемых по формуле :
Эта формула и выражает собой метод простой итерации.
Итерационный процесс продолжается до тех пор, пока значения х(k) не станут близкими с заданной погрешностью к значениям х(k-1).
Теорема. Метод простой итерации сходится тогда и только тогда, когда все собственные числа матрицы
3.2 Метод Зейделя
Метод Зейделя можно использовать как модификацию метода простых итераций. Основная идея модификации состоит в том, что при вычислении очередного (k+1)-го приближения к известному xi при i>1 используют используются уже найденные приближения к известным x1,… xi-1, а не k-е приближение как в методе простых итераций.
На (k+1)-й итерации компоненты приближения
Условие сходимости метода Зейделя заключается в том, что матрица A системы Ax=b, должна удовлетворять условию:
модуль диагонального элемента должен быть больше суммы модулей оставшихся элементов строки или столбца.
Если данное условие выполнено, необходимо проследить, чтобы система была приведена к виду, удовлетворяющему решению методом простой итерации и выполнялось необходимое условие сходимости метода итераций:
3.3 Практическое применение метода простых итераций для решения системы уравнений
Решим систему линейных уравнений методом простых итераций с точностью равной
Выполним проверку на условие сходимости:
Условие выполнено, можно приступать к вычислению нулевого шага:
Начнем итерационный процесс, используя результаты начального приближения: