Смекни!
smekni.com

Сравнительный анализ численных методов (стр. 5 из 6)

(6)

Формула трапеции:

Формула Симпсона

где

m=n/2

h=b-a/n

b, a- концы рассматриваемого отрезка.

Для сравнения результатов вычисления вышеизложенными формулами численного интегрирования вычислим 3-мя способами следующий интеграл, разделив отрезок [0,

] на 6 равных отрезков:

h=

По формуле левых прямоугольников:

По формуле трапеции:

По формуле Симпсона:

А результат полученный аналитически равен

=1

Следовательно, можно сделать вывод о том, что численный метод интегрирования по формуле Симсон является более точным, но используется в общем случае при делении рассориваемого отрезка на чётное число промежутков.


Раздел 5. Численные методы решения обыкновенных дифференциальных уравнений

Инженеру часто приходится иметь дело с техническими системами и технологическими процессами, характеристики которых непрерывным образом меняются во времени. Соответствующие явления как правило подчиняются физическим законам, которые формулируются в виде дифференциальных уравнений. Одной из основных математических задач, которые приходится решать для таких уравнений, является задача Коши (начальная задача). Чаще всего к ней приходят тогда, когда известно начальное состояние физической величины системы в некоторый момент времени t0 (x0,y0) и требуется предсказать её поведение в момент времени t>t0 ( x>x0). В курсе математического обеспечения САПР, мы рассматривали методы решения задачи Коши с помощью решения обыкновенного дифференциального уравнения первого порядка

.

Напомним, что решением обыкновенного дифференциального уравнения (ОДУ) первого порядка является функция y , которая при подстановке в уравнение

, превращает его в тождество.

Обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции y=y(x). Их можно записать в виде

,

где х – независимая переменная.

Наивысший порядок n входящей в уравнение

производной называется порядком дифференциального уравнения.

Методы решения обыкновенных дифференциальных уравнений можно разбить на следующие группы: графические, аналитические, приближенные и численные.

Графические методы используют геометрические построения.

Аналитические методы встречаются в курсе дифференциальных уравнений. Для уравнений первого порядка (с разделяющимися переменными, однородных, линейных и др.), а также для некоторых типов уравнений высших порядков (например, линейных с постоянными коэффициентами) удается получить решения в виде формул путем аналитических преобразований.

Приближенные методы используют различные упрощения самих уравнений путем обоснованного отбрасывания некоторых содержащихся в них членов, а также специальным выбором классов искомых функций.

Численные методы решения дифференциальных уравнений в настоящее время являются основным инструментом при исследовании научно-технических задач , описываемых дифференциальными уравнениями. При этом необходимо подчеркнуть , что данные методы особенно эффективны в сочетании с использованием современных компьютеров.

5.1 Метод Эйлера

Простейшим численным методом решения задачи Коши для ОДУ является метод Эйлера. Рассмотрим уравнение

в окрестностях узлов
(i=1,2,3,…) и заменим в левой части производную
правой разностью. При этом значения функции
узлах
заменим значениями сеточной функции
:


Полученная аппроксимация ДУ имеет первый порядок, поскольку при замене

на

допускается погрешность

.

Будем считать для простоты узлы равноотстоящими, т.е.

Тогда из равенства

получаем

Заметим, что из уравнения

следует


.

Поэтому

представляет собой приближенное нахождение значение функции

в точке
при помощи разложения в ряд Тейлора с отбрасыванием членов второго и более высоких порядков. Другими словами, приращение функции полагается равным её дифференциалу.

Полагая i=0, с помощью соотношения

находим значение сеточной функции

при
:

.

Требуемое здесь значение

задано начальным условием
, т.е.
.

Аналогично могут быть найдены значения сеточной функции в других узлах:

Построенный алгоритм называется методом Эйлера.

Геометрическая интерпретация метода Эйлера дана на рисунке14.

Рисунок 14 . Метод Эйлера.

На рисунке 14. изображены первые два шага, т.е. проиллюстрировано вычисление сеточной функции в точках

. Интегральные кривые 0,1,2 описывают точные решения уравнения
. При этом кривая 0 соответствует точному решению задачи Коши, так как она проходит через начальную точку А(x0,y0). Точки B,C получены в результате численного решения задачи Коши методом Эйлера. Их отклонения от кривой 0 характеризуют погрешность метода. При выполнении каждого шага мы фактически попадаем на другую интегральную кривую. Отрезок АВ – отрезок касательной к кривой 0 в точке А , ее наклон характеризуется значением производной
. Погрешность появляется потому, что приращение значения функции при переходе от х0 к х1 заменяется приращением ординаты касательной к кривой 0 в точке А. Касательная ВС уже проводится к другой интегральной кривой 1. таким образом , погрешность метода Эйлера приводит к тому, что на каждом шаге приближенное решение переходит на другую интегральную кривую.

4.2 Модификация метода Эйлера: Усовершенствованный метод Эйлера

Рассмотрим уравнение

в окрестностях узлов

.

В левой части уравнения

заменим производную центральной разностью

,

а правую часть оставим без изменений:

.

Приближенное значение функции

в точке
вычислим с помощью метода Эйлера:

.