Смекни!
smekni.com

Статистика на предприятии (стр. 2 из 4)

Коэффициент вариации определяется по формуле:

Коэффициент вариации меньше 33%, следовательно, совокупность является однородной, а средняя - типичной и устойчивой.

Задача 5

На основании аналитической группировки задачи 1 вычислить общую, межгрупповую и среднюю из внутригрупповых дисперсий. Определите корреляционное отношение по выработке одного рабочего. Сделайте выводы.

РЕШЕНИЕ:

Общая дисперсия измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловливающих эту вариацию и рассчитывается по формуле:

где - общая средняя по всей совокупности.

Межгрупповая дисперсия характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки. Она рассчитывается по формуле:

Где - средние по отдельным группам;

nj -численности по отдельным группам.

Внутригрупповая дисперсия отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она исчисляется следующим образом:

Средняя из внутригрупповых дисперсий:

Закон, связывающий три вида дисперсий: общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:

σ2общ = δ2+ σ2

Данное соотношение называют правилом сложения дисперсий.

Для решения задачи сначала определим средние по каждой группе. Расчет средних выполнен в табл.5.

Средняя выработка в первой группе (до 3 лет) равна

х1 = 134,2 шт. (971: 5), во второй (от 3 до 10 лет) х2 = 127,0625 шт. (2033: 16), в третьей (свыше 10 лет) х3 = 142,667 шт. (1284: 9)

Промежуточные расчеты дисперсий по группам представлены в табл.5.

Таблица 5. - Расчет данных для определения внутригрупповых дисперсий.

№ рабочего Выработка (х)


1

2

3

4

До 3 лет

1

153

5,5

30,25

3

132

-15,5

240,25

6

162

14,5

210,25

10

143

-4,5

20,25

Итого: 5

590

-

501,00

От 3 до 10 лет

2

168

24,67

608,4

4

124

-19,33

373,8

5

171

27,67

765,4

7

125

-18,33

336,1

8

102

-41,33

1708,4

9

170

26,67

711,1

Итого: 6

860

-

4503,3

свыше 10 лет

-

-

-

-

Итого: 10

1450

-

5004,3

Подставив полученные значения в формулу, получим:

= (501 × 4) /10 = 200,4

= (4503,3 × 6) /10 = 2701,98

Средняя из групповых дисперсий:

= (200,4 ×4+2701,98×6): 10 = (801,6 + 16211,88) / 10 = 1701,348

= [ (147,5-145) 2×4+ (143,3 -145) 2×6]: 10 = (25 + 17,34) /10= 4,234

Затем рассчитаем межгрупповую дисперсию. Средняя (общая) по всей совокупности равна 132,93 шт. (см. табл.2).

Таким образом, общая дисперсия согласно правилу сложения дисперсий:

σ2общ22+ σ2=1701,348+4,234 = 1705,582

На основании правила сложения дисперсий можно определить показатель тесноты связи между группировочным (факторным) и результативным признаками, который называется корреляционным отношением:

Величина 0,04982 показывает отсутствие связи между группировочным и результативным признаками.

Коэффициент детерминации η2 равен:

η2=0,049822 = 0,0024820324 или 0,2482%

Он показывает, что вариация выработки на 0,2482% зависит от стажа и на 99,7518% (100% - 0,2482%) от других неучтенных факторов.

Задача 6

По исходным данным задачи 2 и результатам вычислений задачи 3, 4 установите:

с вероятностью 0,954 возможные пределы средней выработки в генеральной совокупности;

с вероятностью 0,997 возможные пределы удельного веса численности рабочих, имеющих выработку выше средней;

сколько необходимо отобрать рабочих, чтобы с вероятностью 99,7% предельная относительная ошибка выборки не превышала 5%?

РЕШЕНИЕ:

Средняя ошибка выборки определяется по формуле:

где k-коэффициент выборочного наблюдения (по условию задачи 10% или 0,1)

Предельная ошибка выборки определяется по формуле:,

где t - коэффициент доверия (для вероятности 0,954 равен 2)

Определим предельную ошибку средней выработки:

Δ х= = = 11,04 шт.

Найдем границы изменения средней величины в генеральной совокупности:

145,7 -11,04< <145,7+11,04; 134,66 < <156,74

Вывод:

С вероятностью 0,954 можно утверждать, что средняя выработка одного Рабочего в генеральной совокупности находится в пределах от 134,66 шт.д.о 156,74 шт. (не ниже 134,66 шт., но не выше 156,74 шт)

2. Определим удельный вес рабочих, у которых выработка выше средней (145,7 шт.). Таких рабочих 5 человек. Тогда удельный вес их в общей численности составит:

W = 5/10 = 0,5

Рассчитаем предельную ошибку доли в случае механического отбора по формуле:

где w-удельный вес рабочих, у которых выработка выше средней;

n-объем выборочной совокупности;

t - коэффициент доверия (t=3 для вероятности 0,997).

=3•0,15=0,45 или 45%

Найдем границы изменения доли в генеральной совокупности:

p=w±Δp

p=0,5±0,45

0,5-0,45<Р<0,5+0,45;

0,05 <Р< 0,95

5%<Р<95%

Вывод:

С вероятностью 0,997 можно утверждать, что удельный вес рабочих, у которых выработка выше средней, колеблется от 5% до 95%. В генеральной совокупности.

3. Рассчитаем необходимую численность рабочих:

n= (t2•Vσ2): Δ2,t- коэффициент доверия (для вероятности 99,7% равен 3);

Vσ- коэффициент вариации (12,627% - результат решения задачи 4);

Δ2- относительная погрешность, %; (по условию задачи равна 5%).

n=9• (12,627) 2/25=57,399 ≈ 58 чел.

С вероятностью 99,7% можно утверждать, что численность выборки, обеспечивающая относительную погрешность не более 5%, должна составлять не менее 58 чел.

Задача 7

Имеются данные о стаже работы рабочих и их выработке (приложения А, графа *, Б-графа *).

Составьте линейное уравнение регрессии, вычислите его параметры, рассчитайте коэффициенты корреляции и эластичности. По полученному уравнению регрессии рассчитайте теоретические (выравненные) уровни. Результаты расчетов оформите в виде таблицы. Сделайте выводы.

РЕШЕНИЕ:

Уравнение связи в случае линейной зависимости имеет вид:

ух01х

Параметры уравнения а0 и а1 определяют методом наименьших квадратов. Для этого необходимо решить систему уравнений:


na0+a1∑x=∑y;

a0 ∑x+ a1∑x2=∑xy.

Расчет необходимых данных выполним в табл.6

Подставим полученные данные в систему уравнений:

10а0+39а1=1450

39а0+247а1=5557

а0=149,02741; а1= - 1,03267

Уравнение связи между стажем и выработкой имеет вид:

ух = 149,02741 - 1,03267х

Таблица 6. - Расчет данных для уравнения регрессии

Х У Х2 ХУ У2 Ух
1 153 1 153 23409 42,7
4 168 16 672 28224 98,8
1 132 1 132 17424 42,7
9 124 81 1116 15376 192,4
3 171 9 513 29241 80,1
1 162 1 162 26244 42,7
8 125 64 1000 15625 173,7
3 102 9 306 10404 80,1
8 170 64 1360 28900 173,7
1 143 1 143 20449 42,7
Итого 39 1450 247 5557 215296 970

Интерпретация полученного уравнения связи: