Оскільки ми припускаємо, що матриця X має ранг р, то матриця Х'Х додатньо визначена і, отже, не вироджена. Тому рівняння (1.1.4) має єдиний розв’язок, а саме
Цей розв’язок називається оцінкою найменших квадратів вектора β.
Оцінку для β можна одержати й в інший спосіб.
ε'ε = (Y-Хβ)'(Y-Хβ) = Y'Y - 2β'Х'Y+ β'Х'Хβ
(використовуємо той факт, що β'Х'Y = (β'Х'Y)' = Y'Хβ). Продиференцюємо ε'ε по β. Прирівнюючи одержану похідну
- 2Х'Y +2Х'Хβ = 0, (1.1.5)
Або
Х'Хβ = Х'Y.
Звідки
Покажемо, що знайдена стаціонарна точка
(Y-Хβ)'(Y-Хβ) = (Y-Х
Розпишемо
(Y-Х
+ (
+
= {X'X
= Y'Y - Y'X
= Y'Y - Y'Xβ – β'X'Y + β'X'X β = (Y - Xβ)'(Y - Xβ)
Ліва частина в (1.1.6) досягає мінімуму при β =
Далі позначимо
e = Y –
називаються залишками (ми позначили тут скорочено Х(Х'Х)-1Х' через Р). Мінімальне значення ε'ε називається залишковою сумою квадратів (RSS)).
RSS = (Y - Х
= Y’Y -
= Y'Y -
Або
RSS = Y'Y -
Відмітимо, що
Оскільки
Означення. Слідом trX матриці Х називають суму її діагональних елементів
trX = 1 + x21 + x32 + … + xnp-1
Означення. Матриця Р називається ідемпотентною, якщо Р2 = Р. Симетрична ідемпотентна матриця називається проекційною. Якщо Р – проекційна матриця, то trР = rankР.
Теорема 1.1.1.
(I) Матриці Р і In - Р симетричні та ідемпотентнi.
(II) rank[In - Р] = tr[In - Р] = n - р.
(III) (In - Р)Х = 0.
Доведення.
(I) Р' = (X(X'X)-1X')' = X((X'X)-1)'X' = X(X'X)-1X' = P
Отже, матриця Р є симетричною і (In - Р)' = In - Р' = In - Р. Крім того,
Р2 = X(Х'Х)-1Х'Х(Х'Х) -1X' = XIp (Х'Х)-1X' = Р,
і (In – Р)2 = In - 2Р + P2 = In – Р.
(II) Оскільки матриця In - Р симетрична та ідемпотентна, то вона проекційна і tr(In – Р) = rank(In – Р). Тоді
rank[In - Р] = tr[In - Р] = n - trР,
де
trР = tr[X (Х'Х)-1X'] = tr[Х'Х (Х'Х)-1] = trIp = р.
(III) (In - Р)Х = Х - Х(Х'Х)-1Х'Х = Х - Х = 0.
Теорема доведена.
Теорема 1.1.2.
Нехай Р = X(Х'Х)-1X', тоді R(P) = R(X), тобто простір, породжений стовпцями матриці P є простором, породженим стовпцями матриці Х.
Доведення.
R(P) = {z: z = Pα} для деякого α, R(X) = {Y: Y = Xγ} для деякого γ.
Вибираємо z
z = Pα = X(X'X)-1X'α = Xβ,
отже z
Вибираємо Y
Y = Xγ = X(X'X)-1X'Xγ = X(X'X)-1X'Xγ = PY,
отже Y
Теорема доведена.
Теорема 1.1.3.
Доведення.
Теорема доведена.
Якщо припустити, що помилки ε такі, що
M[
тобто