Смекни!
smekni.com

Элементы алгебры и геометрии (стр. 2 из 3)

Задание № 93

Даны координаты точек А, В, С, М:

А (5; 4; 1); В (–1; –2; –2); С (3; –2; 2); М (–5; 5; 4).

1.Найти уравнение плоскости Q, проходящей через точки А, В, С:

= 0;

= 0;

(x – 5)( – 6 – 18) – (y – 4)( – 6 – 6) + (z – 1)(36 – 12) = 0;

– 24(x – 5) + 12(y – 4) + 24(z – 1) = 0;

– 2(x – 5) + (y – 4) + 2(z – 1) = 0;

–2x + 10 + y – 4 + 2z – 2 = 0;

–2x + y + 2z + 4 = 0 – уравнение плоскости Q.

2.Составить каноническое уравнение прямой, проходящей через точку М перпендикулярно плоскости Q:

Подставим координаты точки М (–5; 5; 4) и коэффициенты общего уравнения плоскости Q (–2; 1; 2) в каноническое уравнение прямой:

3.Найти точки пересечения полученной прямой с плоскостью Q и с координатными плоскостями хОу, уОz, xOz: пусть

Где t – некоторый параметр, тогда уравнения прямой можно записать так:

Подставим данные выражения в уравнение плоскости Q и найдем параметр t:

Подставим значение параметра t в уравнения и найдем координаты точки пересечения:

Итак, координаты точки P, точки пересечения полученной во втором пункте прямой и плоскости Q: Р

.

Р1 – точка пересечения прямой с с хОу: z = 0;

P1 (2,6; 1,2; 0).

P2 – точка пересечения прямой с уОz: x = 0;

P2 (0; 1,6;

2,8).

Р3 - точка пересечения прямой с xOz: y = 0;

;

P3 (0,5; 0;

1,5).

Найти расстояние от точки М до плоскости Q:

т.к. прямая МР перпендикулярна плоскости Q, точка Р принадлежит плоскости Q, то расстояние между точками М и Р и будет расстоянием от точки М до плоскости Q.


Производная и дифференциал

Задание № 114

Найти пределы:

Разложим на множители и числитель и знаменатель:

Задание № 135

Функция у задана различными аналитическими выражениями для различных областей изменения аргумента х.

1. Найти точки разрыва функции, если они существуют.

Данная функция определена и непрерывна в интервалах (

При
и
меняется аналитическое выражение функции и только в этих точках функция может иметь разрывы.

Определим односторонние пределы в


Т.к. односторонние пределы в

не совпадают, значит разрыв I рода.

Определим односторонние пределы в точке

:

Т.к. односторонние пределы в точке

совпадают, значит функция в точке
непрерывна.

2. Найти скачок функции в точке разрыва:

точка разрыва

Задание № 198

Найти приближенное значение указанных величин с помощью дифференциалов соответствующих функций.

или

Задание № 156

Найти производные

пользуясь формулами дифференцирования: