Мал.7
Третім алгоритмом створення фрактальних об'єктів на площині є використання комплексних відображень, що зіставляють одному комплексному числу інше комплексне число за деяким ітераційним правилом. Прикладом фрактала отриманого за допомогою комплексних відображень є множина Жюліа (мал.7).
2.2 Системи Ітеріруємих Функцій
У евклідовом просторі
відстань (x;y) між точками x=( ; ) і y=( ; ) визначається за допомогою наступної формулиВідстань в просторі
можна також вимірювати функцією (x;y)=| - |+| - |.Дві приведені функції, будучи вимірами відстані, по-різному визначають відстані між двома точками. Існують чотири основні властивості функції відстані:
- відстані від точки x до точки y і від точки y до точки x рівні: d(x;y)=d(у;x);
- відстань від точки x до цієї ж точки x дорівнює нулю: d(x;x)=0;
- відстань по прямій - це найкоротша відстань між двома точками: d(x;y) <=d(x;z)+d(z;y);
- для двох точок x і у функція відстані має бути дійсною, скінченою і додатною :
.Функція відстані, що задовольняє даним властивостям, називається метрика.
Метричний простір (X,d) - множина точок X разом з метрикою d, визначеною на X.
Перетворення - зіставлення, згідно заздалегідь визначеному правилу, точці в одному просторі точки в іншому (можливо і в тому ж самому просторі).
Відображення, це перетворення, яке переводить простір X1 в простір X2 і позначається fn: X1 X2. Стиснююче відображення - перетворення в метричному просторі X1 X2 за умови існування коефіцієнта стиснення перетворення f: 0 s<1 такого, що d(f(x1),f(x2)) sd(x1,x2) для всіх Система ітеріруємих функцій (Iterated Function System) складається з повного метричного простору (X,d) і скінченної множини стиснюючих відображень fn: X1 X2 з коефіцієнтами стиснення Sn.2.3 Стиснюючі афінні перетворення
Мал. 8.
Перш ніж розкривати зміст поняття - стиснюючі афінні перетворення, розглянемо лінійне перетворення
на комплексній площині Z, яке переводить рівносторонній трикутник з довжиною сторони рівній одиниці в рівносторонній трикутник в два рази меншого розміру представлений на мал. 8.Розглянуте вище лінійне перетворення на комплексній площині є окремим випадком афінного перетворення площини
xn+1=axn+byn+e
yn+1=cxn+dyn+f
Його можна подати в матричному вигляді
Так, наприклад, розглянуте перетворення можна записати у вигляді
У загальному випадку афінне перетворення на площині задається шістьма незалежними дійсними числами. Два числа e і f описують звичайну трансляцію, а чотири числа а, b, с, d задають довільне лінійне перетворення при незмінному положенні початку координат (0;0).
2.4 Метод простої заміни
2.4.1 Серветка Серпінського
Фрактал серветка Серпінського може бути побудований як за допомогою методу простої заміни, який застосовують для побудови регулярних фракталів, так і за допомогою методу IFS.
Розглянемо алгоритм побудови, заснований на методі простої заміни. Правильний трикутник ділений середніми лініями на чотири рівні трикутники і внутрішність центрального викидаємо. З трьома трикутниками, що залишилися, робимо те ж саме і так нескінченне число разів. Після певного числа викидань залишається множина S, представлена на мал. 9, яка є серветкою Серпінського.
Мал.9.
Фрактальна розмірність серветки Серпінського підраховується по формулі D=ln3/ln2=1,5849. Серветка має нульову площу, оскільки неважко перевірити, що в процесі її побудови була виключена площа, в точності рівна площі вихідного трикутника. Про це ж свідчить і значення фрактальної розмірності D<2, яка менше розмірності площини, на якій знаходиться цей об'єкт.
Всім відомий трикутник Паскаля (мал.10) за допомогою якого обчислюють коефіцієнти розкладу виразу виду
. Починаючи з трикутника, що складається з одиниць, обчислюють значення на кожному наступному рівні шляхом додавання сусідніх чисел; останньою ставлять одиницю.Мал.10
Таким чином можна наприклад визначити, що:
Мал.11
Цей трикутник можна перетворити на привабливий фрактальний візерунок (мал.11), якщо замінити непарні коефіцієнти одиницями, а парні — нулями.
Візерунок демонструє властивості коефіцієнтів, що використовується при «арифметизації» комп’ютерних програм, що перетворює їх в алгебраїчні рівняння.
2.4.2 Дракон Хартера-Хейтуея
Для більшості регулярних фракталів фрактальна розмірність D менша, ніж розмірність d того простору, в якому знаходиться даний фрактальний об'єкт. Нерівність D < d відображає факт некомпактності фрактала, причому чим більше розрізняються величини D і d, тим більше рихлим є фрактал. Існують фрактали, які щільно заповнюють простір, в якому вони знаходяться, так що їх фрактальна розмірність D = d. Одним з прикладів такого роду є криві Пеано (Peano curves). Дракон Хартера-Хейтуея (мал.12) є прикладом кривої Пеано, для якої область, яку вона заповнює на площині, має химерну форму.
Мал.12
Перші чотири кроки його побудови представлено на мал.12
Як випливає з мал.13 кожний з відрізків прямої на наступному кроці замінюється на два відрізки, створюючих бічні сторони рівнобедреного прямокутного трикутника, для якого вихідний відрізок був би гіпотенузою. В результаті відрізок як би прогинається під прямим кутом. Напрям прогину чергується. Перший відрізок прогинається вправо (по ходу руху зліва направо), другий - вліво, третій - знову управо і так далі На мал.13 пунктиром показана конфігурація попереднього кроку. Таким чином, після кожного кроку число наявних відрізків подвоюється, а довжина кожного відповідно зменшується вдвічі. Тому фрактальна розмірність кривої, що утворюється в результаті (після нескінченного числа кроків), рівна 2.
Для реалізації вказаного вище алгоритму побудови необхідно перейти до комплексних чисел ZA, ZB и ZC (Мал.14).
Мал.13
Для знаходження координат точки C представимо комплексні числа в тригонометричній формі. Знаходження координат точки C представлене формулами 1-8.
(1) (2) (3) (4) (5) (6)Гранична фрактальна крива (коли n прямує до нескінченності) називається драконом Хартера-Хейтуея. У машинній графіці використання геометричних фракталів необхідно для отримання зображень дерев, кущів, берегових ліній. Двовимірні геометричні фрактали використовуються для створення об’ємних текстур (малюнка на поверхні об’єкту).