5. РАССЧИТАЕМ:
- индекс корреляции:
Связь между объемом капиталовложений и выручкой предприятия в гиперболической модели слабая
- коэффициент детерминации
22,13% изменения выручки предприятия в гиперболической модели происходит под влиянием изменением объема капиталовложений и на 77,87% под влиянием факторов, не включенных в модель.
- F – критерий Фишера
Проверим значимость уравнения
F(расч.) = 2,274< F(табл.)= 5,318, т.е. уравнение в целом можно считать статистически незначимым.
Среднюю относительную ошибку аппроксимации:
Ошибка меньше 7%, модель можно считать точной.
Рис. 3
6. НАЙДЕМ ПАРАМЕТРЫ СТЕПЕННОЙ МОДЕЛИ РЕГРЕССИИ
Произведем линеаризацию переменных путем логарифмирования обеих частей уравнения.
Сделаем замену переменной Y = lg y, A = lg a, X = lg x. Тогда Y = A + b ∙ X – линейная модель парной регрессии. Можно применить МНК.
Необходимые расчеты представлены в таблице 5.
Построена степенная модель зависимости выручки предприятия «АВС» от объема капиталовложений:
Таблица 5
Вспомогательная таблица для расчетов показателей по степенной модель
t | y | x | Y = lg y | X = lg x | X2 = =lg x2 | X*Y = lg x*lg y | A | ||
1998 | 3,0 | 1,1 | 0,477 | 0,041 | 0,002 | 0,020 | 2,946 | 0,003 | 0,018 |
1999 | 2,9 | 1,1 | 0,462 | 0,041 | 0,002 | 0,019 | 2,946 | 0,002 | 0,016 |
2000 | 3,0 | 1,2 | 0,477 | 0,079 | 0,006 | 0,038 | 3,035 | 0,001 | 0,012 |
2001 | 3,1 | 1,4 | 0,491 | 0,146 | 0,021 | 0,072 | 3,200 | 0,010 | 0,032 |
2002 | 3,2 | 1,4 | 0,505 | 0,146 | 0,021 | 0,074 | 3,200 | 0,000 | 0,000 |
2003 | 2,8 | 1,4 | 0,447 | 0,146 | 0,021 | 0,065 | 3,200 | 0,160 | 0,143 |
2004 | 2,9 | 1,3 | 0,462 | 0,114 | 0,013 | 0,053 | 3,120 | 0,048 | 0,076 |
2005 | 3,4 | 1,6 | 0,531 | 0,204 | 0,042 | 0,108 | 3,350 | 0,002 | 0,015 |
2006 | 3,5 | 1,3 | 0,544 | 0,114 | 0,013 | 0,062 | 3,120 | 0,145 | 0,109 |
2007 | 3,6 | 1,4 | 0,556 | 0,146 | 0,021 | 0,081 | 3,200 | 0,160 | 0,111 |
Σ | 31,4 | 13,2 | 4,955 | 1,178 | 0,163 | 0,592 | 0,532 | 0,531 |
7. РАССЧИТАЕМ:
индекс корреляции:
Связь между объемом капиталовложений и выручкой предприятия в степенной модели слабая.
коэффициент детерминации
Степенная модель всего на 13,44% детерминирует зависимость выручки предприятия от объема капиталовложений. 86,56% детерминации происходит под влиянием факторов не учтенных в модели.
F – критерий Фишера
Проверим значимость уравнения
F(расч.) = 1,242 < F(табл.)= 5,318, т.е. уравнение степенной модели в целом можно считать статистически незначимым.
Среднюю относительную ошибку аппроксимации:
Ошибка меньше 7%, степенную модель можно считать точной.
Рис. 4
8. НАЙДЕМ ПАРАМЕТРЫ ПОКАЗАТЕЛЬНОЙ МОДЕЛИ РЕГРЕССИИ
Произведем линеаризацию переменных путем логарифмирования обеих частей уравнения.
Сделаем замену переменной Y = lg y, A = lg a, В = lg b. Тогда Y = A + B ∙ x – линейная модель парной регрессии. Можно применить МНК.
Необходимые расчеты представлены в таблице 6.
Таблица 6
Вспомогательная таблица для расчетов показателей по показательной модели
t | y | x | Y = lg y | x2 | x*Y = x*lg y | A | ||
1998 | 3,0 | 1,1 | 0,477 | 1,21 | 0,525 | 2,953 | 0,002 | 0,016 |
1999 | 2,9 | 1,1 | 0,462 | 1,21 | 0,509 | 2,953 | 0,003 | 0,018 |
2000 | 3,0 | 1,2 | 0,477 | 1,44 | 0,573 | 3,032 | 0,001 | 0,011 |
2001 | 3,1 | 1,4 | 0,491 | 1,96 | 0,688 | 3,196 | 0,009 | 0,031 |
2002 | 3,2 | 1,4 | 0,505 | 1,96 | 0,707 | 3,196 | 0,000 | 0,001 |
2003 | 2,8 | 1,4 | 0,447 | 1,96 | 0,626 | 3,196 | 0,157 | 0,141 |
2004 | 2,9 | 1,3 | 0,462 | 1,69 | 0,601 | 3,113 | 0,045 | 0,073 |
2005 | 3,4 | 1,6 | 0,531 | 2,56 | 0,850 | 3,369 | 0,001 | 0,009 |
2006 | 3,5 | 1,3 | 0,544 | 1,69 | 0,707 | 3,113 | 0,150 | 0,111 |
2007 | 3,6 | 1,4 | 0,556 | 1,96 | 0,779 | 3,196 | 0,163 | 0,112 |
Σ | 31,4 | 13,2 | 4,955 | 17,640 | 6,565 | 0,531 | 0,524 |
Построена показательная модель зависимости выручки предприятия «АВС» от объема капиталовложений:
9. РАССЧИТАЕМ:
индекс корреляции:
Связь между объемом капиталовложений и выручкой предприятия в степенной модели очень слабая.
коэффициент детерминации
В показательной модели изменение выручки на 22,30% обусловлено изменением объема капиталовложений, на 77,70% - влиянием факторов, не включенных в модель.
F – критерий Фишера
Проверим значимость уравнения
F(расч.) = 2,297 < F(табл.) = 5,318, т.е. показательное уравнение в целом можно считать статистически незначимым.
Среднюю относительную ошибку аппроксимации:
Ошибка меньше 7%, показательную модель можно считать точной.
Рис. 5
10. СОСТАВИМ СВОДНУЮ ТАБЛИЦУ ВЫЧИСЛЕНИЙ (таблица 7)
Таблица 7
Пар- аметры | Модель | |||
линейная | гиперболическая | степенная | показательная | |
Ryx | 0,4735 | 0,4705 | 0,3666 | 0,4723 |
Ryx2 | 0,2242 | 0,2213 | 0,1344 | 0,2230 |
Fрасч | 2,31 | 2,27 | 1,24 | 0,78 |
A, % | 5,30 | 5,49 | 5,31 | 5,24 |
Все модели имеют примерно одинаковые характеристики. Но большее значение индекса корреляции, коэффициента детерминации, F – критерия Фишера и меньшее значение средней относительной ошибки аппроксимации имеет линейная модель. Т.е. она лучше и точнее из всех построенных моделей описывает зависимость выручки от объема капиталовложений.