Смекни!
smekni.com

Построение математических моделей (стр. 3 из 5)

Ее можно взять в качестве лучшей для построения прогноза.

11. СДЕЛАЕМ ПРОГНОЗ НА СЛЕДУЮЩИЕ ДВА ГОДА показателя у

(выручка), если х (объем капиталовложений) увеличивается на 10 % по сравнению с последним годом.

Лучшей является линейная модель вида

Сначала найдем прогнозные значения показателя х (объем капиталовложений). В 2007 году объем капиталовложений составил 1,4 млн. руб. Следовательно, в 2008 году он составит – 1,4 ∙ 1,1 = 1,54 млн. руб., а в 2009 году - 1,54 ∙ 1,1 = 1,69 млн. руб.

Подставим прогнозные значения х в уравнение регрессии

Это будут точечные прогнозы результата у (выручка предприятия).

В 2008 году выручка предприятия составит: 2,028+0,843*1,54 = 3,33 (млн. руб.)

В 2009 году: 2,028+0,843*1,69 = 3,46 (млн. руб.)

Рис. 6


Задание 2

Имеются данные, характеризующие выручку (у, млн. руб.) предприятия «АВС» в зависимости от капиталовложений (х1, млн. руб.) и основных производственных фондов (х2, млн. руб.) за последние 10 лет (табл. 8)

Таблица 8

Время, t 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Выручка, у 3,0 2,9 3,0 3,1 3,2 2,8 2,9 3,4 3,5 3,6
Объем капитало-
вложений, х1
1,1 1,1 1,2 1,4 1,4 1,4 1,3 1,6 1,3 1,4
Основные
производственные фонды, х2
0,4 0,4 0,7 0,9 0,9 0,8 0,8 1,1 0,4 0,5

1. Построить матрицу коэффициентов парной корреляции. Сделать соответствующие выводы о тесноте связи результата у и факторов х1 и х2. Установить, проявляется ли в модели мультиколлинеарность.

2. Построить линейную модель множественной регрессии

; дать экономическую интерпретацию параметров b1 и b2.

3. Построить степенную модель множественной регрессии

; дать экономическую интерпретацию параметров β1 и β2.

4. Для каждой из моделей:

- найти коэффициент множественной корреляции;

- найти коэффициент детерминации;

- проверить значимость уравнения регрессии в целом с помощью F – критерия Фишера;

- найти среднюю относительную ошибку аппроксимации.

5. Составить сводную таблицу вычислений; выбрать лучшую модель.

6. Пояснить экономический смысл всех рассчитанных характеристик.

7. Найти частные коэффициенты эластичности и β – коэффициенты.

8. По линейной модели регрессии сделать прогноз на следующие два года показателя у (выручка), в зависимости от х1 (объема капиталовложений) и х2 (основных производственных фондов).

РЕШЕНИЕ:

1. ПОСТРОИМ МАТРИЦУ КОЭФФИЦИЕНТОВ ПАРНОЙ КОРРЕЛЯЦИИ.

Для этого рассчитаем коэффициенты парной корреляции по формуле:

Необходимые расчеты представлены в таблице 9.

-

связь между выручкой предприятия Y и объемом капиталовложений Х1 слабая и прямая;

-

связи между выручкой предприятия Y и основными производственными фондами Х2 практически нет;

-

связь между объемом капиталовложений Х1 и основными производственными фондами Х2 тесная и прямая;

Таблица 9

Вспомогательная таблица для расчета коэффициентов парных корреляций

t Y X1 X2 (y-yср)2 (х1-х1ср)2 (x2-x2ср)2 (y-yср)*
(x1-x1ср)
(y-yср)*
(x2-x2ср)
(х1-х1ср)*
(x2-x2ср)
1998 3,0 1,1 0,4 0,0196 0,0484 0,0841 0,0308 0,0406 0,0638
1999 2,9 1,1 0,4 0,0576 0,0484 0,0841 0,0528 0,0696 0,0638
2000 3,0 1,2 0,7 0,0196 0,0144 1E-04 0,0168 -0,0014 -0,0012
2001 3,1 1,4 0,9 0,0016 0,0064 0,0441 -0,0032 -0,0084 0,0168
2002 3,2 1,4 0,9 0,0036 0,0064 0,0441 0,0048 0,0126 0,0168
2003 2,8 1,4 0,8 0,1156 0,0064 0,0121 -0,0272 -0,0374 0,0088
2004 2,9 1,3 0,8 0,0576 0,0004 0,0121 0,0048 -0,0264 -0,0022
2005 3,4 1,6 1,1 0,0676 0,0784 0,1681 0,0728 0,1066 0,1148
2006 3,5 1,3 0,4 0,1296 0,0004 0,0841 -0,0072 -0,1044 0,0058
2007 3,6 1,4 0,5 0,2116 0,0064 0,0361 0,0368 -0,0874 -0,0152
Σ 31,4 13,2 6,9 0,684 0,216 0,569 0,182 -0,036 0,272
Средн. 3,14 1,32 0,69

Также матрицу коэффициентов парных корреляций можно найти в среде Excel с помощью надстройки АНАЛИЗ ДАННЫХ, инструмента КОРРЕЛЯЦИЯ.

Матрица коэффициентов парной корреляции имеет вид:

Y X1 X2
Y 1
X1 0,4735 1
X2 -0,0577 0,7759 1

Матрица парных коэффициентов корреляции показывает, что результативный признак у (выручка) имеет слабую связь с объемом капиталовложений х1, а с Размером ОПФ связи практически нет. Связь между факторами в модели оценивается как тесная, что говорит о их линейной зависимости, мультиколлинеарности.

2. ПОСТРОИТЬ ЛИНЕЙНУЮ МОДЕЛЬ МНОЖЕСТВЕННОЙ РЕГРЕССИИ

Параметры модели найдем с помощью МНК. Для этого составим систему нормальных уравнений.

Расчеты представлены в таблице 10.

Решим систему уравнений, используя метод Крамера:

Таблица 10

Вспомогательные вычисления для нахождения параметров линейной модели множественной регрессии

y x1 x2 x12 x1*x2 x22 y*x1 y*x2
3,0 1,1 0,4 1,21 0,44 0,16 3,3 1,2
2,9 1,1 0,4 1,21 0,44 0,16 3,19 1,16
3,0 1,2 0,7 1,44 0,84 0,49 3,6 2,1
3,1 1,4 0,9 1,96 1,26 0,81 4,34 2,79
3,2 1,4 0,9 1,96 1,26 0,81 4,48 2,88
2,8 1,4 0,8 1,96 1,12 0,64 3,92 2,24
2,9 1,3 0,8 1,69 1,04 0,64 3,77 2,32
3,4 1,6 1,1 2,56 1,76 1,21 5,44 3,74
3,5 1,3 0,4 1,69 0,52 0,16 4,55 1,4
3,6 1,4 0,5 1,96 0,7 0,25 5,04 1,8
31,4 13,2 6,9 17,64 9,38 5,33 41,63 21,63

Линейная модель множественной регрессии имеет вид:

Если объем капиталовложений увеличить на 1 млн. руб., то выручка предприятия увеличиться в среднем на 2,317 млн. руб. при неизменных размерах основных производственных фондов.