Смекни!
smekni.com

Построение математических моделей (стр. 4 из 5)

Если основные производственные фонды увеличить на 1 млн. руб., то выручка предприятия уменьшиться в среднем на 1,171 млн. руб. при неизменном объеме капиталовложений.

3. РАССЧИТАЕМ:

коэффициент множественной корреляции:

Связь выручки предприятия с объемом капиталовложений и основными производственными фондами тесная.

коэффициент детерминации:

67,82% изменения выручки предприятия обусловлено изменением объема капиталовложений и основных производственных фондов, на 32,18% - влиянием факторов, не включенных в модель.

F – критерий Фишера

Проверим значимость уравнения

Табличное значение F – критерия при уровне значимости α = 0,05 и числе степеней свободы d.f.1 = k = 2 (количество факторов), числе степеней свободы d.f.2 = (n – k – 1) = (10 – 2 – 1) = 7 составит 4,74.

Так как Fрасч. = 7,375 > Fтабл. = 4.74, то уравнение регрессии в целом можно считать статистически значимым.

Рассчитанные показатели можно найти в среде Excel с помощью надстройки АНАЛИЗА ДАННЫХ, инструмента РЕГРЕССИЯ.


Таблица 11

Вспомогательные вычисления для нахождения средней относительной ошибки аппроксимации

y x1 x2 yрасч. y-yрасч А
3,0 1,1 0,4 2,97 0,03 0,010
2,9 1,1 0,4 2,97 -0,07 0,024
3,0 1,2 0,7 2,85 0,15 0,050
3,1 1,4 0,9 3,08 0,02 0,007
3,2 1,4 0,9 3,08 0,12 0,038
2,8 1,4 0,8 3,20 -0,40 0,142
2,9 1,3 0,8 2,96 -0,06 0,022
3,4 1,6 1,1 3,31 0,09 0,027
3,5 1,3 0,4 3,43 0,07 0,019
3,6 1,4 0,5 3,55 0,05 0,014
0,353

среднюю относительную ошибку аппроксимации

В среднем расчетные значения отличаются от фактических на 3,53 %. Ошибка небольшая, модель можно считать точной.

4. Построить степенную модель множественной регрессии

Для построения данной модели прологарифмируем обе части равенства

lg y = lg a + β1 ∙ lg x1 + β2 ∙ lg x2.

Сделаем замену Y = lg y, A = lg a, X1 = lg x1, X2 = lg x2.

Тогда Y = A + β1 ∙ X1 + β2 ∙ X2 – линейная двухфакторная модель регрессии. Можно применить МНК.

Расчеты представлены в таблице 12.

Таблица 12

Вспомогательные вычисления для нахождения параметров степенной модели множественной регрессии

y x1 x2 lg x1 lg x2 lg y lg2 x1 lg x1* lg x2 lg y*lg x1 lg2 x2 lg y* lg x2
3,0 1,1 0,4 0,041 -0,398 0,477 0,002 -0,016 0,020 0,158 -0,190
2,9 1,1 0,4 0,041 -0,398 0,462 0,002 -0,016 0,019 0,158 -0,184
3,0 1,2 0,7 0,079 -0,155 0,477 0,006 -0,012 0,038 0,024 -0,074
3,1 1,4 0,9 0,146 -0,046 0,491 0,021 -0,007 0,072 0,002 -0,022
3,2 1,4 0,9 0,146 -0,046 0,505 0,021 -0,007 0,074 0,002 -0,023
2,8 1,4 0,8 0,146 -0,097 0,447 0,021 -0,014 0,065 0,009 -0,043
2,9 1,3 0,8 0,114 -0,097 0,462 0,013 -0,011 0,053 0,009 -0,045
3,4 1,6 1,1 0,204 0,041 0,531 0,042 0,008 0,108 0,002 0,022
3,5 1,3 0,4 0,114 -0,398 0,544 0,013 -0,045 0,062 0,158 -0,217
3,6 1,4 0,5 0,146 -0,301 0,556 0,021 -0,044 0,081 0,091 -0,167
31,4 13,2 6,9 1,178 -1,894 4,955 0,163 -0,165 0,592 0,614 -0,943

Решаем систему уравнений применяя метод Крамера.

Степенная модель множественной регрессии имеет вид:

В степенной функции коэффициенты при факторах являются коэффициентами эластичности. Коэффициент эластичности показывает на сколько процентов измениться в среднем значение результативного признака у, если один из факторов увеличить на 1 % при неизменном значении других факторов.

Если объем капиталовложений увеличить на 1%, то выручка предприятия увеличиться в среднем на 0,897% при неизменных размерах основных производственных фондов.

Если основные производственные фонды увеличить на 1%, то выручка предприятия уменьшиться на 0,226% при неизменных капиталовложениях.

5. РАССЧИТАЕМ:

коэффициент множественной корреляции:

Связь выручки предприятия с объемом капиталовложений и основными производственными фондами тесная.

Таблица 13

Вспомогательные вычисления для нахождения коэффициента множественной корреляции, коэффициента детерминации, ср.относ.ошибки аппроксимации степенной модели множественной регрессии

Y X1 X2 Y расч. (Y-Yрасч.)2 (Y-Yср)2 A
3,0 1,1 0,4 2,978 0,000 0,020 0,007
2,9 1,1 0,4 2,978 0,006 0,058 0,027
3,0 1,2 0,7 2,838 0,026 0,020 0,054
3,1 1,4 0,9 3,079 0,000 0,002 0,007
3,2 1,4 0,9 3,079 0,015 0,004 0,038
2,8 1,4 0,8 3,162 0,131 0,116 0,129
2,9 1,3 0,8 2,959 0,003 0,058 0,020
3,4 1,6 1,1 3,317 0,007 0,068 0,024
3,5 1,3 0,4 3,460 0,002 0,130 0,012
3,6 1,4 0,5 3,516 0,007 0,212 0,023
31,4 13,2 6,9 0,198 0,684 0,342

коэффициент детерминации:

71,06% изменения выручки предприятия в степенной модели обусловлено изменением объема капиталовложений и основных производственных фондов, на 28,94 % - влиянием факторов, не включенных в модель.

F – критерий Фишера

Проверим значимость уравнения

Табличное значение F – критерия при уровне значимости α = 0,05 и числе степеней свободы d.f.1 = k = 2, числе степеней свободы d.f.2 = (n – k – 1) = (10 – 2 – 1) = 7 составит 4,74.

Так как Fрасч. = 8,592 > Fтабл. = 4.74, то уравнение степенной регрессии в целом можно считать статистически значимым.

среднюю относительную ошибку аппроксимации

В среднем в степенной модели расчетные значения отличаются от фактических на 3,42 %. Ошибка небольшая, модель можно считать точной.

6. СОСТАВИМ СВОДНУЮ ТАБЛИЦУ ВЫЧИСЛЕНИЙ (табл. 14)

Таблица 14

Параметры Модель
линейная степенная
Коэффициент множественной корреляции 0,8235 0,8429
Коэффициент детерминации 0,6782 0,7106
F – критерий Фишера 7,375 8,592
Средняя относительная ошибка аппроксимации, % 3,53 3,42

В целом модели имеют примерно одинаковые характеристики. Но лучшей считается степенная модель, т.к значение коэффициента корреляции, индекса детерминации, F – критерия Фишера немного больше, а средняя относительная ошибка аппроксимации немного меньше, чем у линейной модели.