А). Если ‘а’ не является корнем характеристического уравнения k2+pk+q=0, то частное решение
имеет вид: , где Qn(x) – многочлен той же степени, что и Pn(x), только с неопределенными коэффициентами.Например.
Pn(x)=8 - многочлен 0-ой степени (n=0). Qn(x)=A;
Pn(x)=2x-3 - многочлен 1-ой степени (n=1). Qn(x)=Ax+B;
Pn(x)=x2 - многочлен 2-ой степени (n=2). Qn(x)=Ax2+Bx+C;
Pn(x)=3x3-3x - многочлен 3-ей степени (n=3). Qn(x)=Ax3+Bx2+Cx+D.
Замечание. Многочлен Qn(x) всегда должен быть полный, т.е. содержать все степени х. Коэффициенты А,В,С,Д и т.д. находим по методу неопределенных коэффициентов непосредственно при решении каждого конкретного уравнения.
Б). Если а является однократным корнем характеристического уравнения k2+pk+q=0, то есть совпадает с одним из корней характеристического уравнения, то частное решение
имеет вид: .В). Если а является двукратным корнем характеристического уравнения k2+pk+q=0, то есть совпадает с двумя корнями характеристического уравнения, то частное решение
имеет вид: .Итог.
Если
, то , где r– кратность корня ‘а’ в характеристическом уравнении, т.е. r=0, если ‘а’ не есть корень; r=1, если ‘а’ совпадает с одним из корней; r=2, если ‘а’ совпадает с двумя корнями.2. Если правая часть f(x) имеет вид:, где Pn(x)–многочлен n–ой степени; Qm(x)-многочлен m–ой степени.
Тогда возможны следующие два случая:
А). Если
не является корнем характеристического уравнения k2+pk+q=0 ( ), то частное решение имеет вид: , где SN(x), TN(x)–многочлены степени N с неопределенными коэффициентами, где N=max из n и m (N=max{n,m}), т.е. степень N многочленов SN(x) и TN(x) равна наибольшей из степеней многочленов Pn(x) и Qm(x).Б). Если
является корнем характеристического уравнения k2+pk+q=0 ( ), то частное решение имеет вид:Замечание.
- Если в правой части f(x) неоднородного уравнения во 2 случае отсутствует одно из слагаемых, т.е. Pn(x)=0 или Qm(x)=0, то частное решение
все равно записывается в полоном виде.- Если правая часть f(x) неоднородного уравнения в 1 и 2 случаях есть сумма нескольких функций (f(x)= f1(x)+ f2(x)+… fn(x)), то
.- Так же рассматриваем все комбинации при расчете
: cosx, sinx, xcosx, xsinx,x2cosx, x2sinx.Комплексным числом (z) называется выражение z=x+iy, где х и у- действительные числа, i-мнимая единица.
i определяется: i2=-1 , отсюда
.х- действительная часть (x=Rez);
у- мнимая часть (y=Imz).
Геометрическое изображение комплексных чисел
Существуют следующие формы комплексных чисел: алгебраическая (x+iy), тригонометрическая (r(cos
+isin )), показательная (rei ).Всякое комплексное число z=x+iy можно изобразить на плоскости ХОУ в виде точки А(х,у).
Плоскость, на которой изображаются комплексные числа, называется плоскостью комплексного переменного z (на плоскости ставим символ z).
Ось ОХ – действительная ось, т.е. на ней лежат действительные числа. ОУ – мнимая ось с мнимыми числами.
x+iy- алгебраическая форма записи комплексного числа.
Выведем тригонометрическую форму записи комплексного числа.
;Подставляем полученные значения в начальную форму:
, т.е.r(cos
+isin ) - тригонометрическая форма записи комплексного числа.Показательная форма записи комплексного числа следует из формулы Эйлера:
, тогдаz=rei - показательная форма записи комплексного числа.
Действия над комплексными числами
1. сложение. z1+z2=(x1+iy1)+ (x2+iy2)=(x1+x2)+i(y1+y2);
2. вычитание. z1-z2=(x1+iy1)- (x2+iy2)=(x1-x2)+i(y1-y2);
3. умножение. z1z2=(x1+iy1)*(x2+iy2)=x1x2+i(x1y2+x2y1+iy1y2)=(x1x2-y1y2 )+i(x1y2+x2y1);
4. деление. z1/z2=(x1+iy1)/(x2+iy2)=[(x1+iy1)*(x2-iy2)]/[ (x2+iy2)*(x2-iy2)]=
Два комплексных числа, которые отличаются только знаком мнимой единицы, т.е. z=x+iy (z=x-iy), называются сопряженными.
Произведение
- Если комплексные числа заданы в тригонометрической форме.
z1=r(cos
+isin ); z2=r(cos +isin ).То произведение z1*z2 комплексных чисел находится:
, т.е. модуль произведения равен произведению модулей, а аргумент произведения равен сумме аргументов сомножителей.- Если комплексные числа заданы в показательной форме.
Частное
- Если комплексные числа заданы в тригонометрической форме.
- Если комплексные числа заданы в показательной форме.
1. Комплексное число задано в алгебраической форме.
z=x+iy, то zn находим по формуле бинома Ньютона:
zn=(x+iy)n.
- число сочетаний из n элементов по m (число способов, сколькими можно взять n элементов из m). ; n!=1*2*…*n; 0!=1; .Применяем для комплексного числа.
В полученном выражении нужно заменить степени i их значениями:
i0=1 Отсюда, в общем случае получаем: i4k=1
i1=i i4k+1=i
i2=-1 i4k+2=-1
i3=-i i4k+3=-i
i4=1
i5=i
i6=-1
Пример.
i31= i28i3=-i
i1063= i1062i=i
2. Если комплексное число задано в тригонометрической форме.
z=r(cos
+isin ), то - формула Муавра.Здесь nможет быть как “+” так и “-” (целым).
3. Если комплексное число задано в показательной форме: