Смекни!
smekni.com

Основные понятия математического анализа (стр. 3 из 4)

А). Если ‘а’ не является корнем характеристического уравнения k2+pk+q=0, то частное решение

имеет вид:
, где Qn(x) – многочлен той же степени, что и Pn(x), только с неопределенными коэффициентами.

Например.

Pn(x)=8 - многочлен 0-ой степени (n=0). Qn(x)=A;

Pn(x)=2x-3 - многочлен 1-ой степени (n=1). Qn(x)=Ax+B;

Pn(x)=x2 - многочлен 2-ой степени (n=2). Qn(x)=Ax2+Bx+C;

Pn(x)=3x3-3x - многочлен 3-ей степени (n=3). Qn(x)=Ax3+Bx2+Cx+D.

Замечание. Многочлен Qn(x) всегда должен быть полный, т.е. содержать все степени х. Коэффициенты А,В,С,Д и т.д. находим по методу неопределенных коэффициентов непосредственно при решении каждого конкретного уравнения.

Б). Если а является однократным корнем характеристического уравнения k2+pk+q=0, то есть совпадает с одним из корней характеристического уравнения, то частное решение

имеет вид:
.

В). Если а является двукратным корнем характеристического уравнения k2+pk+q=0, то есть совпадает с двумя корнями характеристического уравнения, то частное решение

имеет вид:
.

Итог.

Если

, то
, где r– кратность корня ‘а’ в характеристическом уравнении, т.е. r=0, если ‘а’ не есть корень; r=1, если ‘а’ совпадает с одним из корней; r=2, если ‘а’ совпадает с двумя корнями.

2. Если правая часть f(x) имеет вид:,

где Pn(x)–многочлен n–ой степени; Qm(x)-многочлен m–ой степени.

Тогда возможны следующие два случая:

А). Если

не является корнем характеристического уравнения k2+pk+q=0 (
), то частное решение
имеет вид:
, где SN(x), TN(x)–многочлены степени N с неопределенными коэффициентами, где N=max из n и m (N=max{n,m}), т.е. степень N многочленов SN(x) и TN(x) равна наибольшей из степеней многочленов Pn(x) и Qm(x).

Б). Если

является корнем характеристического уравнения k2+pk+q=0 (
), то частное решение
имеет вид:

Замечание.

- Если в правой части f(x) неоднородного уравнения во 2 случае отсутствует одно из слагаемых, т.е. Pn(x)=0 или Qm(x)=0, то частное решение

все равно записывается в полоном виде.

- Если правая часть f(x) неоднородного уравнения в 1 и 2 случаях есть сумма нескольких функций (f(x)= f1(x)+ f2(x)+… fn(x)), то

.

- Так же рассматриваем все комбинации при расчете

: cosx, sinx, xcosx, xsinx,x2cosx, x2sinx.

КОМПЛЕКСНЫЕ ЧИСЛА

Комплексным числом (z) называется выражение z=x+iy, где х и у- действительные числа, i-мнимая единица.

i определяется: i2=-1 , отсюда

.

х- действительная часть (x=Rez);

у- мнимая часть (y=Imz).

Геометрическое изображение комплексных чисел

Существуют следующие формы комплексных чисел: алгебраическая (x+iy), тригонометрическая (r(cos

+isin
)), показательная (rei
).

Всякое комплексное число z=x+iy можно изобразить на плоскости ХОУ в виде точки А(х,у).

Плоскость, на которой изображаются комплексные числа, называется плоскостью комплексного переменного z (на плоскости ставим символ z).

Ось ОХ – действительная ось, т.е. на ней лежат действительные числа. ОУ – мнимая ось с мнимыми числами.

x+iy- алгебраическая форма записи комплексного числа.

Выведем тригонометрическую форму записи комплексного числа.

;

Подставляем полученные значения в начальную форму:

, т.е.

r(cos

+isin
) - тригонометрическая форма записи комплексного числа.

Показательная форма записи комплексного числа следует из формулы Эйлера:

, тогда

z=rei

- показательная форма записи комплексного числа.

Действия над комплексными числами

1. сложение. z1+z2=(x1+iy1)+ (x2+iy2)=(x1+x2)+i(y1+y2);

2. вычитание. z1-z2=(x1+iy1)- (x2+iy2)=(x1-x2)+i(y1-y2);

3. умножение. z1z2=(x1+iy1)*(x2+iy2)=x1x2+i(x1y2+x2y1+iy1y2)=(x1x2-y1y2 )+i(x1y2+x2y1);

4. деление. z1/z2=(x1+iy1)/(x2+iy2)=[(x1+iy1)*(x2-iy2)]/[ (x2+iy2)*(x2-iy2)]=

Два комплексных числа, которые отличаются только знаком мнимой единицы, т.е. z=x+iy (z=x-iy), называются сопряженными.

Произведение

- Если комплексные числа заданы в тригонометрической форме.

z1=r(cos

+isin
); z2=r(cos
+isin
).

То произведение z1*z2 комплексных чисел находится:

, т.е. модуль произведения равен произведению модулей, а аргумент произведения равен сумме аргументов сомножителей.

- Если комплексные числа заданы в показательной форме.


;
;

Частное

- Если комплексные числа заданы в тригонометрической форме.

- Если комплексные числа заданы в показательной форме.

Возведение в степень

1. Комплексное число задано в алгебраической форме.

z=x+iy, то zn находим по формуле бинома Ньютона:

zn=(x+iy)n.

- число сочетаний из n элементов по m (число способов, сколькими можно взять n элементов из m).

; n!=1*2*…*n; 0!=1;
.

Применяем для комплексного числа.


В полученном выражении нужно заменить степени i их значениями:

i0=1 Отсюда, в общем случае получаем: i4k=1

i1=i i4k+1=i

i2=-1 i4k+2=-1

i3=-i i4k+3=-i

i4=1

i5=i

i6=-1

Пример.

i31= i28i3=-i

i1063= i1062i=i

2. Если комплексное число задано в тригонометрической форме.

z=r(cos

+isin
), то

- формула Муавра.

Здесь nможет быть как “+” так и “-” (целым).

3. Если комплексное число задано в показательной форме:

Извлечение корня