Отримана матриця:
Вирішуємо систему:
Отриманих корінь:
Тоді перший рядок буде мати вигляд:
Аналогічно знайдемо другий рядок фундаментальної матриці рішень для першого характеристичного числа - 1. Отримані значення:
Тоді другий рядок буде мати вигляд:
Знайдемо третю й четверту рядки фундаментальної матриці рішень для першого характеристичного числа
. Сполучений корінь не породжує нових речовинних лінійно незалежних приватних рішень.Отримані значення:
Відокремлюючи в ньому речовинні й мнимі частини, одержимо два речовинних рішення, які й становлять першу й другу рядки фундаментальної матриці рішень
Аналогічно інші 3:
Запишемо знайдену фундаментальну матрицю рішень:
Помножимо транспоновану фундаментальну матрицю рішень на вектор вільних коефіцієнтів
і одержимо вектор загального рішення вихідної системи:Зробимо перевірку знайденого рішення в такий спосіб:
Одержуємо нульову матрицю-стовпець:
що показує, що загальне рішення знайдене вірно.
Дамо визначення матричному ряду й експонентній функції матриці.
Матричні ряди. Розглянемо нескінченну послідовність матриць
, , . Будемо говорити, що послідовність матриць сходиться до матриці А: , якщо при . З визначення норми треба, що збіжність матриць еквівалентна заелементної збіжності. Матричним рядом називається символ , причому говорять, що цей ряд сходиться до суми , якщо до f сходиться послідовність часткових сум Sk, деНехай
, тоді можна визначити ступінь матриці А звичайним образом: (k раз). Розглянемо ряд, називаний статечним: , , ,де по визначенню покладемо A0 = En.
Експонентна функція матриці. Як приклад розглянемо статечної ряд, рівний:
.Тому що радіус збіжності відповідного числового ряду
Дорівнює нескінченності, то ряд сходиться при всіх А. Сума ряду називається експонентною функцією (експонентою) і позначається через еА, якщо ехр{А}.
Приблизно вектор рішень можна знайти як добуток матричного ряду:
і вектора початкових умов y0= [y1,y2, ….yk].
Формула є матричною задачею Коші в наближеному виді.
Експонентою
матриці А називається сума рядуде Е - одинична матриця. Матриця
є рішенням матричної задачі Коші: є фундаментальною матрицею системи. Знайдемо розкладання матричного ряду послідовно по сімох, вісьмох і десяти перших членах.Для одержання розкладання по 7 перших членах (аналогічно по 8,10 і 10). Результатом буде матриця 4*4. Отримані матриці множимо на вектор початкових умов S= [1,2,3,4] і одержуємо наближене рішення у вигляді матричного ряду.
При збільшенні членів розкладання ряду вектор наближених рішень буде прагнути до вектора точних рішень. Цей факт можна спостерігати, графічно порівнюючи зображення точного й наближеного рішень (див. додаток).
Помножимо на відповідний вектор початкових умов і одержимо наближене рішення у вигляді матричного ряду, запишемо отримане рішення для n=7.
[s1 ≔ 1, s2 ≔ 2, s3 ≔ 3, s4 ≔ 4]
Матричний метод рішення системи рівнянь (1) заснований на безпосереднім відшуканні фундаментальної матриці цієї системи.
де Е - одинична матриця.
Властивість матричної експоненти: а) якщо АВ=ВА, те еА+В=еА*еВ= еВ *еА; б) якщо А=S-1*B*S, те еА=S-1*eB*S, де матриця S - це матриця перетворення змінних із власного базису в базис вихідних змінних. в) матриця y (t) =eAt є рішенням матричної задачі Коші: т.е. є фундаментальною матрицею системи (1).
Із властивості в) треба, що рішення y (t) системи (1) задовольняючій умові y (0) =y0, визначається вираженням y (t) =eAt*y0. Таким чином, задача знаходження рішень системи рівнянь (1) еквівалентна задачі відшукання матриці eAt по матриці А.
Для обчислення матриці eAt зручно представити матрицю А в виді:
,де матриця S - це матриця перетворення змінних із власного базису в базис вихідних змінних, а BА - жорданова форма матриці А, тому що eAt = S-1*eBt*S.
Жорданова форма матриці залежить від виду характеристичних чисел.
1. Нехай характеристичні числа дійсні кратні, тоді Жорданова форма матриці розмірності nxn має вигляд:
де
- дійсний корінь кратності n.2. Якщо серед корінь характеристичного полінома є, як дійсні різні, так і дійсних кратних корінь, то матриця В має вигляд:
де
- дійсних різних корінь, а - дійсний корінь кратності 2.3. При наявності серед корінь характеристичного полінома корінь комплексно-комплексно-сполучених Жорданова клітка виглядає в такий спосіб:
де а
комплексно сполучений корінь характеристичного полінома.Тому що в нашім випадку серед характеристичних чисел присутні, як комплексно-комплексно-сполучені корінь л = 2 - ?? л = 2 +?, так і дійсний різних корінь л = - 1? л = 1, те жорданова матриця виглядає в такий спосіб:
З рівняння A*S = S*В, де S - матриця, одержуємо систему 16-го порядку, з якої знаходимо елементи матриці S. Отримана матриця S буде виглядати в такий спосіб: