Смекни!
smekni.com

Типовой расчет (стр. 3 из 4)

,

где: mi – число исходов, благоприятствующих появлению события А при условии, что событие Нi соответственно наступило; n – общее число равновозможных исходов испытания.

При наступлении события Н1 во второй урне станет (40+15)=55 белых и 7 чёрных шаров, всего в урне 62 шара, тогда для события A | Н1 имеем:

m1 = 55, a n = 62, отсюда


При наступлении события Н2 во второй урне станет (40+14)=54 белых и (7+1)=8 чёрных шаров, всего в урне 62 шаров, тогда для события A | Н2 имеем:

m2 = 54, a n = 62, отсюда

Таким образом, подставляя найденные вероятности в формулу полной вероятности, находим вероятность события А:

=0,2857×0,8871 + 0,7143×0,871 = 0,8756

Ответ: Р(А) = 0,8756.

9. В альбоме k чистых и l гашеных марок. Из них наудачу извлекаются m марок (среди которых могут быть и чистые, и гашенные), подвергаются спецгашению и возвращаются в альбом. После этого вновь наудачу извлекаются n марок. Определить вероятность того, что все n марки - чистые.

Дано: k = 7, l = 5, m = 2, n = 2.

Решение.

Испытание состоит в том, что наудачу выбирают из альбома после гашения 2 марки.

Пусть событие А - все 2 марки - чистые.

Рассмотрим гипотезы:

Событие Н1 – из альбома извлекли и подвергли спецгашению 2 чистые и ни одной гашеной марки;

Событие Н2 – из альбома извлекли и подвергли спецгашению 1 чистую и 1 гашеную марки;

Событие Н3 – из альбома извлекли и подвергли спецгашению ни одной чистой и 2 гашеные марки.

Так как события Н1, Н2, Н3 образуют полную группу событий, и событие А может произойти с одним из этих событий, вероятность события А находим по формуле полной вероятности:

Определяемвероятности гипотез Н1, Н2, Н3 с помощью классического определения вероятности:

,

где: mi – число исходов, благоприятствующих появлению события Hi, n – общее число равновозможных исходов испытания.

Из альбома можно вынуть 2 марки из (k + l) = (7 + 5) = 12 марок -

способами, тогда общее число равновозможных исходов испытания равно:

n =

Находим вероятность гипотезы Н1 2 чистые марки из 7 можно выбрать

способами, а 0 гашенных из 5 -
способами, тогда число исходов, благоприятствующих появлению события Н1, используя теорему умножения, будет равно:

m =

×
=

Отсюда, вероятность события Н1 равна:

Аналогично находим вероятности гипотез Н2 и Н3:

Для события Н2 имеем:

m2=

×
=

Отсюда, вероятность события Н2 равна:

Для события Н3 имеем:

m3=

×
=

Отсюда, вероятность события Н3 равна:

Контроль:


Находим условные вероятности события А при условии, что события Н1, Н2, Н3 соответственно наступили, то есть вероятности

,
и
с помощью классического определения вероятности:

,

где: mi – число исходов, благоприятствующих появлению события А при условии, что событие Нi соответственно наступило; n – общее число равновозможных исходов испытания.

При наступлении события Н1 в альбоме станет (7-2)=5 чистых и (5+2)=7 гашеных марок, всего в альбоме 12 марок, тогда для события A | Н1 имеем: m1 =

- число способов, которыми можно выбрать 2 чистых марки из 5. n =
- число способов,которыми можно выбрать 2 марки из 12.

Отсюда

При наступлении события Н2 в альбоме станет (7-1)=6 чистых и (5+1)=6 гашеных марок, всего в альбоме 12 марок, тогда для события A | Н2 имеем: m2 =

- число способов, которыми можно выбрать 2 чистых марки из 6. n =
- число способов,которыми можно выбрать 2 марки из 12.

Отсюда

При наступлении события Н3 в альбоме станет (7-0)=7 чистых и (5+0)=5 гашеных марок, всего в альбоме 12 марок, тогда для события A | Н3 имеем: m3 =

- число способов, которыми можно выбрать 2 чистых марки из 7. n =
- число способов,которыми можно выбрать 2 марки из 12.

Отсюда

Таким образом, подставляя найденные вероятности в формулу полной вероятности, находим вероятность события А:

= 0,3182 · 0,1515 + 0,5303 · 0,2273 + 0,1515 · 0,3182 = 0,217.

Ответ: Р(А) = 0,217.

10. В магазин поступают однотипные изделия с 3-х заводов, причем i–й завод поставляет mi% изделий. Среди изделий i–го завода ni % - первосортных. Куплено одно изделие. Оно оказалось первосортным. Найти вероятность того, что купленное изделие выпущено j-м заводом?

Дано: m1= 60%, m2= 10%, m3= 30%, n1 = 80%, n2 = 90%, n3 = 80%, j = 3.

Решение.

Испытание состоит в том, что наудачу покупают одно изделие.

Рассмотрим событие А – изделие оказалось первосортным.

Рассмотрим гипотезы:

Событие H1 – наудачу купленное изделие изготовлено на 1-ом заводе.

Событие H2 – наудачу купленное изделие изготовлено на 2-ом заводе.

Событие H3 – наудачу купленное изделие изготовлено на 3-ем заводе.

По условию задачи необходимо найти вероятность события Н3|А, то есть события состоящего в том, что наудачу купленное изделие изготовлено на 3-ем заводе, если известно, что она первосортное.

Так как события H1, H2 и H3 образуют полную группу событий, и событие А может наступить с одним из этих событий, то для нахождения вероятности события

воспользуемся формулой Байеса:

,

где полная вероятность события А, которая может быть определена по формуле полной вероятности:

Определяемвероятности гипотез Н1, Н2, Н3 с помощью классического определения вероятности:

,

где: mi – число исходов, благоприятствующих появлению события Hi, n – общее число равновозможных исходов испытания.

Для события Н1 имеем: m1 = 60% (количество изделий, изготовленных на 1-ом заводе), n = 100% (общее количество изделий); тогда вероятность события Н1 равна:

Аналогично находим вероятности гипотез Н2 и Н3.

Для события Н2 имеем: m2 = 10% (количество изделий, изготовленных на 2-ом заводе), n = 100% (общее количество изделий); тогда вероятность события Н2 равна:

Для события Н3 имеем: m3 = 30% (количество изделий, изготовленных на 3-ем заводе), n = 100% (общее количество изделий); тогда вероятность события Н3 равна: