і
дві різні конфігурації, що перетинаються по множині
. Легка перевірка перебором показує, що інших конфігурацій, що містять елемент , немає. Якщо тепер виписати всі різні конфігурації в просторі , то кожний вектор із з'явиться точно у двох з них, звідки й . Нехай - Множина всіх конфігурацій в.Якщо
- довільний елемент із , то тоді й тільки тоді є конфігурацією, коли - конфігурація, тому індуцирує відображення . Ясно, що це відображення на й, виходить, перестановка на . Очевидно, що є гомоморфне відображення . Щоб знайти його ядро, візьмемо в елемент . Нехай такий, що . Нехай і - дві конфігурації, що містять . Тоді не належить однієї з них, скажемо, . Звідси й . Інакше кажучи, ядро тривіально, і ми маємо інективный гомоморфізм . По теоремі 33 група складається з елементів, тому .Помітимо, що група
неабелева. Щоб переконатися в цьому, досить взяти нетривіальні проективні трансвекції із із прямими. Отже, група також неабелева.Пропозиція 37 Група
має тривіальний центр, а .Доказ. Розглянемо довільний елемент
із центра групи . Нехай - довільна пряма з . Нехай - проективна трансвекція із із прямій . Тоді прямій перетворення є . Але , тому що лежить у центрі. Отже, для всіх . Тому й, виходить, група дійсно не має центра. Друге твердження треба з першого, якщо застосувати гомоморфізм .Пропозиція 38 Якщо
, - довільні прямі з , та множина трансвекцій із із прямої й множину трансвекцій з прямій сполучені відносно .Доказ. По теоремі Витта в групі
існує такий елемент , що . Тоді сполучення елементом відображає множина трансвекцій із із прямій на множину трансвекцій із із прямій .Приклад 39 Дві трансвекції з
не обов'язково сполучені в. Наприклад, трансвекції з прямій , сполучені з , мають вигляд , де пробігає .Зауваження 40 Нехай
- симплектическая база простору . Якщо - довільна симетрична матриця порядку 2 над і - лінійне перетворення, певне матрицею те ми знаємо, що належить групі . Якщо перетворити в , роблячи 1) додаток кратного одного стовпця до іншого з наступним аналогічним перетворенням відповідних рядків або 2) перестановку двох стовпців з наступною перестановкою відповідних рядків, то лінійне перетворення з матрицею знову буде належати групі , тому що теж буде симетричною. У дійсності й сполучені в. Щоб переконатися в цьому, помітимо, що при підходящій матриці з . Перетворення , певне матрицею належить групі , і , тому що .