Покладемо
, і для . Тоді Крім того, радикальне розкладання. Ми можемо повторити попередні міркування й одержати розкладання у якому де - регулярна площина й для . За допомогою 7 знайдемо ізометрію простору на , погоджену з на кожному , а отже, на . Крім того, дане відображає на . Виходить, існує продовження ізометрії до ізометрії простору на .Далі
, тому що ізометричне , тому й, отже, по теоремі 19 існує ізометрія простору на . Таким чином, існує продовження ізометрії до ізометрії простору на .Геометричне перетворення
абстрактного векторного простору на абстрактний векторний простір - це біекція з наступною властивістю: підмножина простору тоді й тільки тоді є підпростором в , коли - підпростір в.Очевидно, що композиція геометричних перетворень - геометричне перетворення й перетворення, зворотне до геометричного, - також геометричне. Геометричне перетворення зберігає включення, об'єднання й перетинання підпросторів, а також ряди Жордана - і Гельдера, що тому справедливо випливає пропозиція.
Пропозиція 25 Якщо
- геометричне перетворення простору на , те для будь-яких підпросторів , простори виконуються співвідношенняПід проективним простором
простору ми будемо розуміти множину всіх підпросторів простору . Таким чином, складається з елементів множини , що є підпросторами в ; . Будь-які два елементи й з мають об'єднання й перетинання, а саме й , так що - ґрати; вона має найбільший елемент і найменший елемент . Кожному елементу простору зіставляється число . Кожне з володіє поруч Жордана - Гельдера , і всі такі ряди мають довжину . Покладемоі назвемо
, , множинами прямих, площин і гіперплощин простору відповідно.Проективність
простору на - це біекция з наступною властивістю: для будь-яких , із включення має місце тоді й тільки тоді, коли .