Розділ 3
Як уже було сказано, дзета-функція Римана широко застосовується в математичному аналізі. Однак найбільше повно важливість її виявляється в теорії чисел, де вона надає неоціненну допомогу у вивченні розподілу простих чисел у натуральному ряді. На жаль, розповідь про серйозні й нетривіальні застосування дзета-функції Римана виходить за рамки цієї роботи. Але щоб хоча б небагато представити міць цієї функції, доведемо з її допомогою кілька цікавих тверджень.
Наприклад, відомо, що простих чисел нескінченно багато. Самий знаменитий елементарний доказ належить Евклиду. Воно полягає в наступному. Припустимо, що існує кінцеве число простих чисел, позначимо їх p1, p2, … , pn... Розглянемо число p1p2…pn+1,воно не ділиться на жодне із простих і не збігається з жодним з них, тобто є простим числом, відмінним від вищевказаних, що суперечить припущенню. Виходить, кількість простих чисел не може бути кінцевим.
Інший доказ цього факту, що використовує дзета-функцію, було дано Ейлером. Розглянемо дане в першому розділі рівність (5) при s=1, одержимо
Тепер перепишемо (1) у вигляді
Незважаючи на свою простоту наведені вище пропозиції важливі в концептуальному плані, тому що вони починають низку досліджень усе більше й більше глибоких властивостей ряду простих чисел, що триває донині. Спочатку, основною метою вивчення дзета-функції саме й було дослідження функції
Спочатку скористаємося розкладанням дзета-функції в добуток:
Тепер обчислимо інтеграл у правій частині (2). Тому що при
Використовуємо формулу (2) для доказу однієї дуже серйозної й важливої теореми, а саме одержимо закон розподілу простих чисел, тобто покажемо, що
Як історична довідка відзначу, що великий німецький математик Карл Фрідріх Гаус емпірично встановив цю закономірність ще в п'ятнадцятирічному віці, коли йому подарували збірник математичних таблиць, що містить таблицю простих чисел і таблицю натуральних логарифмів.
Для доказу візьмемо формулу (2) і спробуємо дозволити це рівняння відносно
Ми могли б уже застосувати формулу Меллина, але тоді було б досить важко виконати інтегрування. Тому колись перетворимо рівність (3) у такий спосіб. Диференціюючи по s, одержуємо