(Z– Y)2 + ZYº0 modK. (1.83)
1.6 Противоречия сравнений и равенств
Противоречие 1
Все сравнения по модулю K, в том числе и (1.79) и (1.80), будут справедливы для любого простого делителя, принадлежащего числу K. Для первого случая ПФ благодаря (1.49) таким простым делителем, принадлежащим K, будет число Р, тогда сравнения (1.79) и (1.80) по модулю Р будут соответственно
r2 – r + 1 º 0 modP, (1.84)
r3 º –1 modP. (1.85)
Благодаря Малой теореме Ферма имеем
rP–1 – 1 º0 modP. (1.86)
Пусть Р = 6n+ 5, тогда сравнение (1.86) с учетом сравнения (1.85) будет выглядеть следующим образом:
r 6n + 5 – 1 – 1 = r 6n+ 4 – 1 = (r3)2n + 1r – 1 º (–1)2n + 1r – 1 º 0 mod P,
отсюда rº– 1 modP, тогда с учетом этого сравнения (1.50) и (1.51) будет иметь вид (–1)ZºXmodP, Zº (–1)Yº 0 modP. Тогда после вычитания сравнений получим
- 2ZºX+ YmodPÞс учетом (1.26) 3Zº 0 modP, что невозможно, так как (Z,K) =1 и Р = 6n+ 5 > 3. Пришли к противоречию .
Первый случай ПФ для простых показателей вида 6n+ 5 доказан.
Противоречие 2
Сравним равенства (1.44) и (1.45) по модулю K 2 с учетом сравнения (1.81). для P вида 6n + 1 (S = 2). Очевидно, что левые части равенств (1.44) и (1.45) сравнимы с нулем по модулю K 2, т.е.
РXY[(X + Y)2 – XY]2
º 0 modK 2, XY[(X + Y)2 – XY]2 º 0 modK 2, тогда и правые части равенств (1.44) и (1.45) должны быть сравнимы с нулем по модулю K 2, т.е. º 0 modK2.Разложим левую часть полученного сравнения, воспользовавшись теоремой 1.1, получим
– = (С0 – a0)P + PC0a0(C0 – a0)P–2 + … AP–3/2 (C0 – a0)3 + (C0 – a0) º 0 mod K2.Из (1.27) следует, что С0 – a0 º 0 modK, учитывая это, отбросим все слагаемые полученного разложения, содержащие множитель (С0 – a0)i, где i³3, получим
(C0 – a0) º0 modK2,отсюда с учетом (1.27)
d1d2 º0 modK, что невозможно, так как ни один простой делитель числа K, не принадлежит ни С0, ни a0 , ни d1.ни d2 (см. 1.3.6.). Число Р, также не может делиться на K, так как для первого случая ПФ Kкратно Р2 [ (1.47)], а для второго случая (K, Р) = 1 [см. (1.49)].Пришли к противоречию: левые части (1.44) и (1.45) делятся на K 2, а правые их части не делятся на K 2.
Проблема Ферма (первый и второй случаи) для всех простых показателей Р = 6n+ 1 доказана.
1.7 Второй случай ПФ для простых показателей вида 6n+ 5
В это разделе в качестве модулей будем использовать числа Kи K2.
Расширим представление о модуле Kеще двумя свойствами:
(д). Простые числа вида 6n + 5 не принадлежат к делителям K.
Пусть простое число P1= 6n+ 5 является делителем K.
Тогда благодаря (1.80) имеем r3º- 1 modP1, но и rP1 –1 º(r3)2n+ 1rº1 modP1 ÞÞ(-1)2n+1 rº1 modP1 Þrº- 1 modP1.
(-1)Z º X mod P1 ÞZ + X º 0 mod P1,
После сложения полученных сравнений с учетом того, что благодаря (1.26) X+ YºZmodP1 имеем 3Zº0 modP1, что не возможно, так как P1 > 3 и (Z,P) =1. Пришли к противоречию, а значить простые числа вида 6n+ 5 не могут быть делителями K.
(е). Числа 3t, где t > 1, не принадлежит к делителям K.
Пусть 32 = 9 является делителем модуля K, тогда из (1.80) следует
r3 º- 1 mod9. Этому сравнению удовлетворяют, из приведенной системы наименьшие натуральные вычеты по модулю 9, следующие числа: 2, 5 и 8 , так 23 + 1=9 º 0 mod 9, 53 + 1= 126 º 0 mod 9, 83 + 1 = 513 º 0 mod 9
Но и XP+ YP– ZPº0 mod9
rPZP+ (-rPXP) – ZPºrPZP+ (-rPrPZP) – ZPº0 mod9 ÞÞrP- r2P– 1 º0 mod9,
Сравним каждое слагаемое левой части полученного сравнения по модулю 9, так
rP = r6n +5 = (r3)2n + 1r2 º (-1)2n + 1r2 º - r2 mod 9,
r2P = r2 (6n +5) = (r3)4n + 3rº (-1)4n + 3rº - rmod 9, тогда
rP - r2P – 1 º (-r2) - (-r) – 1 ºr2 –r + 1 º 0 mod 9, (е.1)
Ни один вычет (2,5 и 8) не удовлетворяет сравнению (е.1)так:
22 – 2 + 1 º3 º0 mod9, что не возможно.
52 – 5 + 1 º 21 º 0 mod9, что не возможно,
82 – 8 + 1 º 57 º 0 mod9, что не возможно.
Тем самым мы доказали, что числа 3t где t > 1 не могут быть делителями модуля K.
Из найденных свойств модуля Kследует, что простыми делителями его могут быть только числа вида 6n+ 1 и число 3. Тогда функция Эйлера j(K) будет иметь множитель 6 и среди натуральных вычетов найдутся числа принадлежащие 6 по модулю K и таких чисел будет j(6) = 2. [1]
Для доказательства 2-го случая ПФ для простых показателей вида 6n+ 5 составим три начальных сравнения по модулю K2, используя наименьшие
натуральные вычеты, приведенной системы по модулю K2 и числа X,Y и Z.
r1Z º X mod K2, r2Y º Z mod K2, r3Xº –Y mod K2.
Перемножим левые, и правые части полученных сравнений получим r1 r2 r3ZYXº- ZYXmodK2 , отсюда r1 r2 r3º- 1modK2.
Перемножим первое и второе, первое и третье сравнения так
r1Z2º r2XY mod K2, r3X2 º - r1ZY mod K2.
Благодаря сравнениям . Z2 - XYº0 modKи X2 + ZYº0 modK, из полученных сравнений следует, что r1 ºr2 modK, r1 ºr3 modK, а значит и
r2 ºr3 modK, тогда
r1 = e1K+ D, r2 = e2K+ D, r3 = e3K+ D, где (e1, e2, e3) <K. Cучетом этого r1 r2 r3 ºD3 º-1ºmodK, а значит число Dпринадлежит показателю 6 по модулю K (D6 º 1 modK), но таких чисел может быть только j(6) = j(2)j(3) = 2 и они нами найдены это число rи (K + 1 – r), поэтому число D = r или D = (K +1 – r).
Пусть для определенности D = r.(
Учитывая, то что D3 + 1 º(D+ 1)(D2 - D+ 1) ºr3 + 1 º(r+ 1)( r2 – r+ 1) º0 modK, то будут справедливы сравнения:
r13 + 1 º (r1 + 1) (r12 - r1 + 1) º 0 mod K, r23 + 1 º (r2 + 1)(r22 – r2 + 1) º 0 mod K, r33 + 1 º (r1+ 1)(r32 – r3 + 1 º 0 mod K.
Так как ни r1,ни r2, ни r3 не могут быть сравнимы с (-1)по модулю K[в противномслучае rº -1modK, противоречивость этого сравнения, показана в п. (д) раздела 1.7.], то имеем:
r12 - r1 + 1 º0 modK,
r22 - r2 + 1 º0 modK, r32 - r3 + 1 º0 modK, а благодаря этим сравнениям будут справедливы и нижеследующие сравнения
r12P - r1P + 1 º r12 - r1 + 1 º 0 mod K, (1)
r22P - r2P + 1 º r22 - r2 + 1 º 0 mod K, (2) r32P - r3P + 1 º r32 - r3 + 1 º 0 mod K, таккак(3)
таккак:
r12P º r12(6n + 5) º (r13)4n + 3r1 º (-1)4n + 3r1 º - r1 mod K,
r1P º r16n + 5 º (r13)2n + 1r12 º (-1)2n + 1r12 º - r12 mod K,
r22P º r22(6n + 5) º (r23)4n + 3r2 º (-1)4n + 3r2 º - r2 mod K,
r2P º r26n + 5 º (r23)2n + 1r22 º (-1)2n + 1r22 º - r22 mod K,
r32P º r32(6n + 5) º (r33)4n + 3r3 º (-1)4n + 3r3 º - r3 mod K ,
r3P º r36n + 5 º (r33)2n + 1r32 º (-1)2n + 1r32 º - r32 mod K.
Введем еще три сравнения по модулю K2.
Очевидно XP+ YP– ZPº0 modK2, тогда с учетом 3-х начальных сравнений имеем
r1PZP+ YP- r2PYPºr1Pr2PYP– r2PYP+ YPº0 modK2, так как (Y,K) =1, то
r1P r2P – r2P + 1 º 0 mod K2 Þ
Þ r1P r2P º r2P - 1 mod K2. (4)
XP +(-r3PXP) – r2P(- r3PXP) º XP(1 - r3P + r2P r3P) º 0 mod K2 , таккак(X,K) =1,тоr2P r3P - r3P +1 º mod K2 Þ r2P r3P º r3P – 1 mod K2. (5)
r1PZP + (-r3PXP) – ZP º r1PZP + (-r3Pr1PZP) – ZPº ZP(r1P + (-r3Pr1P) – 1) º 0 mod K2, таккак (Z, K) = 1, тоr3Pr1P - r1P + 1 º 0 mod K2 Þ r3Pr1P º r1P – 1 mod K2 (6)
Поиск противоречий
Перемножим сравнения (1) и (2), а так же сравнения(1) и (3)
(r12P - r1P + 1)( r22P - r2P + 1) º 0 mod K2, (7) (r12P - r1P + 1)( r32P - r3P + 1) º 0 mod K2. (8)
1.7.2. Послераскрытияскобоксравнения (7) сучетомсравнения (4)
получим
r12P r22P – r12P r2P + r12P - r1Pr22P + r1Pr2P – r1P + r12P - r1P + 1 º (r2P – 1)2 – r1P(r2P – 1) – r2P(r2P – 1) + (r2P – 1) + 2r12P – 2 r1P +1 º (r2P – 1)( r2P – 1 – r1P – r2P + 1) +2r12P – 2r1P + + 1 ºº - r1P(r2P – 1) +2r12P – 2r1P +1 º 0 mod K2. (9)
После раскрытия скобок сравнения (8) с учетом сравнения (6)
Получим
- r1P(r3P– 1) +2r12P– 2r1P+1 º0 modK2. (10)
Из сравнения (9) вычтем сравнение (10) получим
r1P(r2P– 1) + r1P(r3P– 1) ºr1P(r3P– r2P) º0 modK2,так как (r1P,K2) = 1, то r3P– r2Pº0 modK2, ÞÞr2Pºr3PmodK2, (11) тогда из (5) следует, что (а)r2Pr2Pºr2P– 1 modK2, а из (4) имеем
(б) r1P r2P º r2P - 1 mod K2.
Из сравнения (а) вычтем сравнение (б) и принимая во внимание, что (r2P, K2) =1 получим
r2Pºr1PmodK2
Таким образом, с учетом (11)имеем
r1Pºr2Pºr3PmodK2, теперь докажем, что
r1 = r2 = r3
Воспользуемся результатами для r1, r2 и r3 и, отбрасывая в разложении биномов числа кратные K2, получим сравнения:
r1P = (e1K + D)P º (Pe1KDP-1 + DP) mod K2,
r2P = (e2K + D)P º (Pe2KDP-1 + DP) mod K2, r3P = (e2K + D)P º (Pe3K DP-1 + DP) mod K2
r1P – r2Pº Pe1KDP-1 - Pe2KDP-1 º PKDP-1(e1 - e2) º 0 mod K2,
r1P– r3P º Pe1KDP-1 - Pe3KDP-1 º PKDP-1(e1 - e3) º 0 mod K2,
r2P– r3P º Pe2KDP-1 - Pe3KDP-1 º PKDP-1(e2 - e3) º 0 mod K2.
Так как для 2-го случая ПФ справедливо условие (P, K) = 1, то
e1 - e2 º0 modK,
e1 - e3 º0 modK,
e2 - e3 º0 modK, отсюда с учетом условия (e1, e2 и e3) < Kполучим
e1 = e2 = e3. Пусть e1 = e2 = e3 = e0, тогда
r1 = e0K+ D,
r2 = e0K+ D,
r3 = e0K+ D, а значит
r1 = r2 = r3, что и требовалось доказать.
Пусть r1 = r2 = r3= r0, тогда из
r1r2r3 = r03 º - 1 mod K2 ÞÞ r03 + 1º (r0 + 1)( r02 – r0 + 1) º 0 mod K2.
Одно из множителей левой части полученного сравнения должно делиться на K2
Пусть r0 + 1º0 modK2 Þr0 º-1 modK2, тогда из (4) следует
r0Pr0Pºr0P – 1modK2 Þ (-1)P(-1)Pº 1 º(-1)P - 1 modK2 Þ3 º0 modK2, что не возможно так как модуль K> 3.
Следовательно, множитель r0 + 1 не может делиться на K2.
Тогда r02 – r0 + 1 º 0 mod K2.
Сравним трехчлен X+ Y–Zпо модулю K2.
Пусть X+ Y–ZºD0 modK2, тогда с учетом начальных сравнений имеем
r0Z+ (-r0X) – Zºr0Z+(-r0r0Z) – Zº- Z( r02 – r0 + 1) ºD0 modK2, отсюда левая часть полученного сравнения делиться на K2, тогда и D0 должно делиться на K2, т.е.
D0 º0 modK2, а это значит, что
X+ Y– ZºD0 º0 modK2, но
X+ Y– Z= Kd0d1d2, тогда Kd0d1d2 º0 modK2 ÞÞd0d1d2 º0 modK, что не возможно так как (d0,K) =1, (d1,K) =1, (d2,K) =1.
Используя элементарные алгебраические преобразования многочленов и, метод сравнения чисел по модулю, удалось доказать справедливость Утверждения Пьера Ферма для всех простых показателей > 3.
Известно, что Леонард Эйлер нашел решение ПФ для простого показателя Р =3.
Предложенная в настоящей работе методика позволяет решить1-ый случай ПФ для P=3.
Так очевидное сравнение X3 + Y3 – Z3 º0 modKпосле преобразования левой части примет вид (X+ Y– Z)3 + 3Z(X+ Y)(X+ Y– Z) – 3XY(X+ Y) º0 modKÞÞ3XY(X+ Y) º0 modK.
Так как для 1-го случая K= eP2 = e32, то полученное сравнение невозможно и тем самым 1-ый случай ПФ доказан.
Для 2-го случая необходимо доказать, что K> 1, что автору сделать не удалось.
Библиографический список
1. Виноградов И.М. Основы теории чисел. – М.: Наука, 1973.
2. Депман И.Я. История арифметики. – М.: Просвещение, 1965.
3. Ляпин Е.С., Евсеев А.Е. Алгебра и теория чисел. – М.: Просвещение, 1974. – Ч. 1.
4. Ожигова Е.П. Что такое теория чисел. – М.: Знание, 1970.
5. Постников М.М. Введение в теорию алгебраических чисел. – М.: Наука, 1982.
6. Постников М.М. Теорема Ферма. – М.: Наука, 1978.