Древне греческих ученых заинтересовало: сколько может быть простых чисел в натуральном ряду? Ответил на этот вопрос Евклид, доказав, что простых чисел бесконечное множество.
Однако способ Эратосфена не смог удовлетворить ученых, и они пытались найти формулу простых чисел. На протяжении многих столетий это сделать не удавалось. В ряду простых чисел были найдены многие интересные закономерности, но поставленная задача оставалась без ответа. Первым приблизился к решению проблем простых чисел П.Л. Чебышев.
В 1750 г. Леонард Эйлер установил, что число 2³¹ - 1 является простым. Оно оставалось самым большим из известных простых чисел более ста лет. В 1876 г. Французский математик Лукас установил, что огромное число
2127 - 1 = 170 141 183 560 469 231 731 687 303 715 884 105 727
также простое. Оно содержит 39 цифр. Для его вычисления были механические настольные счетные машины. В 1957 г. было найдено следующее простое число: 23217 – 1. А простое число 244 497 – 1 состоит из 13 000 цифр.
УЗЫ ДРУЖБЫ В МИРЕ ЧИСЕЛ
Два натуральных числа m и n называются дружественными, если сумма собственных делителей mравна n, а сумма собственных делителей n равнаm.
История дружественных чисел теряется в глубине веков. По свидетельству античного философа Ямвлиха(III-IV вв.), великий Пифагор на вопрос, кого следует считать своим другом, ответил:<<Того, кто является моим вторым я, как числа 220 и 284>>. Проверьте, пожалуйста, что числа 220 и 284 дружественные.
Для нахождения дружественных чисел арабский ученый Сабит Ибн Курра (IX в. ) предложил хитроумный способ: задавшись натуральным числом n, подсчитать спамогательные величины p= 3*2n-1 – 1, q=3*2n -1 и r= 9*2 2n – 1`-1. Если окажется, что числа p, q, r простые, тогда числа А = 2npq и В = 2nr дружественные.
Пифагорова пара 220 и 284 получаются по этому методу при n=2. Следующую пару чисел – 17 296 и 18 416 – обнаружили независимо друг от друга марокканский ученый Ибн Аль – Банна и три столетия спустя француз Пьер Ферма. В этом случае n=4. Третью пару – 9 363 584 и 9 437 056 (при n=7) – указал в 1638 г. Рене Декарт. Дальнейшие попытки найти дружественные пары при не больших значениях n к успеху не приводят. Более того способ Сабита ибн Курры не выявляется ни одной новой пары дружественных чисел, если n увеличивать до 20 000! Неужели дружественные числа – алмазы-самородки и для подсчета их пар многовато пальцев одной руки?
В 1747-1750 гг. Леонард Эйлер провел уникальные числовые раскопки. Он придумал оригинальные методы поиска и обнаружил сразу 61 новую пару дружественных чисел. Примечательно, что среди них оказались и не четные числа: 69 615 и 11 498 355; 87 633 и 12 024 045. Сейчас известно около 1100 пар дружественных чисел. Любопытно, что в 1866 г. итальянский школьник Н. Паганини (однофамилец известного скрипача) нашел пару дружественных чисел 1184 и 1210, которую все, в том числе и выдающееся математики, проглядели!
Вот пары дружественных чисел в пределе 100 000:
220 – 284
1184 – 1210
2620 – 2924
5020 – 5564
6232 – 6368
10744 – 10856
12285 – 14595
17296 – 18416
63020 – 76084
66928 – 66992
67095 – 71145
69615 – 87633
79750 – 88730
Дружественные числа продолжают скрывать множество тайн. Есть ли смешанные пары, у которых одно число четное, а другое не четное? Существует общая формула, описывающая все дружественные пары? На эти и другие вопросы ответы пока не найдены.
Из опыта вычисления люди знали, что каждое число является либо простым, либо произведением нескольких простых чисел. Но они не умели этого доказывать. Пифагор или кто-то из его последователей нашел доказательство этого утверждения.
Теперь легко объяснить роль простых чисел в математике: они являются теми кирпичиками, из которых с помощью умножения строят все остальные числа. Хорошо было бы, если все простые числа можно было сосчитать! Пусть их было бы хоть миллион – все равно мы знали бы, что, перемножая эти простые числа, можем получить все остальные. Но это оказалось не так. Через два столетия после Пифагора греческий геометр Евклид написал книгу <<Начала>>. И одними из утверждений этой книги было следующее: самого большого простого числа не существует.
Простые числа в натуральном ряде чисел, расположены очень причудливо. Иногда между ними есть только одно четное число (все простые числа, кроме числа 2, нечетные). Такими близнецами так их зовут в науке, являются: 11 и 13, 17 и 19, 29 и 31. До сих пор не известно, есть ли самые большие близнецы или нет. А иногда между соседними простыми числами лежит пропасть в миллионы и миллиарды чисел. Первым глубокие результаты о том, как разбросаны простые числа среди остальных натуральных чисел, получил великий русский математик Пафнутий Львович Чебышев, основатель и руководитель русских математических исследований в прошлом веке.
ПРОБЛЕМА ГОЛЬДБАХА
Из простых чисел можно получить любое число с помощью умножения. А что будет, если складывать простые числа? Конечно, если брать сколько угодно слагаемых, то можно получить любое число: четные числа получаются путем сложения двоек, а не четные путем сложения одной тройки и нескольких двоек. Но живший в России в XVIII веке математик Гольдбах решил складывать нечетные простые числа лишь попарно. Он обнаружил удивительную вещь: каждый раз ему удавалось представить четное число в виде суммы двух простых чисел. Вот эти разложения для двухзначных чисел (как это было во времена Гольдбаха, мы считаем 1 простым числом):
4=1+3, 6=1+5, 8=1+7, 10=3+7, 12=5+7, 14=3+11,
16=3+13, 18=5+13, 20=3+17, 22=11+11, 24=11+13,
26=13+13, 28=23+5, 30=23+7, 32=19+13, 34=17+17,
36=17+19, 38=19+19, 40=37+3, 42=37+5, 44=37+7,
46=23+23, 48=47+1, 50=47+3, 52=47+5, 54=47+7,
56=53+3, 58=53+5, 60=53+7, 62=31+31, 64=61+3,
66=61+5, 68=61+7, 70=67+3, 72=67+5, 74=37+37,
76=73+3, 78=73+5, 80=73+7, 82=41+41, 84=41=43,
86=43+43, 88=87+1, 90=87+3, 92=87+5,94=87+7,
96=89+7, 98=97+1.
О своем наблюдении Гольдбах написал великому математику XVIII века Леонарду Эйлеру, который был членом Петербургской академии наук. Проверив еще много четных чисел, Эйлер убедился, что все они являются суммами двух простых чисел. Но четных чисел бесконечно много. По этому вычисления Эйлера давали надежду на то, что свойством, которое заметил Гольдбах, обладают все числа. Однако попытки доказать, что это всегда будет так, ни к чему не привели.
Двести лет математики размышляли над проблемой Гольдбаха. И только советскому ученому Ивану Матвеевичу Виноградову удалось сделать решающий шаг. Он установил, что любое достаточно большое натуральное число является суммой трех простых чисел. Но число, начиная с которого верно утверждение Виноградова, невообразимо велико. По этому пока что, к сожалению, нет надежды даже с помощью самых лучших ЭВМ проверить, верно ли это утверждение для всех остальных чисел.
АЛГОРИТМ
Для нахождения всех простых чисел не больше заданного числа n, следуя методу Эратосфена, нужно выполнить следующие шаги:
1) Выписать подряд все целые числа от 2 до n (2,3,4…,n)
2) Пусть переменная p изначально равна 2-первому простому числу.
3) Вычеркнуть из списка все числа от 2p до n, делящиеся на p (то есть, числа 2p,3p,4p,… .)
4) Найти первое невычеркнутое число, большее, чем р, и присвоить значению переменной p это число.
5) Повторять шаги 3 и 4 до тех пор, пока p не станет больше, чем n.
6) Все невычеркнутые числа в списке - простые числа.
На практике, алгоритм можно немного улучшить следующим образом.
На шаге №3, числа можно вычеркивать, начиная сразу с числа p2, потому что все составные числа меньше его уже будут вычеркнуты к этому времени.
И, соответственно, останавливать алгоритм можно, когда p2 станет больше, чем n.
ЗАКЛЮЧЕНИЕ
В данной работе рассмотрены вопросы:
История возникновения простых чисел.
Рассмотрен алгоритм нахождения простых чисел.
Названы имена ученых, которые занимались изучениям простых чисел.
А также подобраны задачи на простые числа.
Данную работу можно использовать на уроках математики, и в кружковой работе, что бы не казалось, что наука математика это сухая, сухая неинтересная наука.
БИБЛИОГРАФИЯ
1. Шейнина О.С., Соловьева Г.М. Математика. Занятия школьного кружка 5 6 кл. М.: изд во нц энас, 2005 208с (портфель учителя)
2. Агеева И.Д. Занимательные материалы по информатике и математике. Методическое пособие. М.: Ту. Сфера, 2006 240с (игровые методы обучения).
3. Математика: Учеб. Для 5 кл. общеобразовательное учреждений / Г.В. Дорофеев, И.Ф. Шарыгин. С.Б. Суворова и др.; Под редакцией Г.В. дорофеева, И.Ф. Шарыгина. М.: Просвещения, 1998. 368с.: ил. ISBN 5 09 008059 3
4. Занимательные дидактические материалы по математике. Сборник заданий. Выпуск 2 В.В. Трошин М.: Глобус, 2008 282с. (учение с увлечением).