Розкладаючи
У даному прикладі 𝑘 = 6 – парне число, тому
2) знайти найменші цілі, додатні значення 𝑥, 𝑦, які задовольняють рівняння
Розкладаючи в ланцюговий дріб
У цьому прикладі 𝑘=5, найменше парне 𝑘𝑛 дорівнює 10, тому шукані значення
Аналогічно до рівняння (6) можна розв’язати рівняння
Теореми доведені для рівняння (6) справедливі і для рівняння (10), але замість умови парності 𝑘𝑛 , треба поставити умову 𝑘𝑛 не ділиться на 2. Таким чином, при парних значеннях 𝑘 діофантове рівняння (10) не має розв’язків.
2.3 Невизначене рівняння третього степеня
Сума кубів трьох цілих чисел може бути кубом четвертого числа. Наприклад,
Це означає, що куб ребро якого дорівнює 6 см, рівновеликий сумі трьох кубів, ребра яких дорівнюють 3см, 4см, 5см.
Спробуємо знайти таке ж відношення, тобто поставимо задачу: знайти розв’язки рівняння
Розглянемо прийом, що дозволяє знайти безліч розв’язків цього рівняння в цілих (додатних та від’ємних)числах. Нехай 𝑎, 𝑏, 𝑐, 𝑑 та 𝛼, 𝛽, 𝛾, 𝛿 – дві четвірки чисел, що задовольняють рівняння. Додамо до чисел першої четвірки числа другої четвірки, помноженої на деяке число 𝑘, і спробуємо підібрати число 𝑘 так, щоб отримані числа
також задовольняють наше рівняння. Інакше кажучи, підберемо 𝑘 таким чином, щоб виконувалась рівність
Розкривши дужки і знаючи, що 𝑎, 𝑏, 𝑐, 𝑑 та 𝛼, 𝛽, 𝛾, 𝛿 задовольняють рівняння, тобто мають місце рівності
ми отримаємо:
Або
Добуто може бути нулем тоді і тільки тоді, коли є нулем принаймні один із множників. Прирівнявши кожен із множників до нуля, отримуємо два значення для 𝑘. Перше значення, 𝑘=0, нас не цікавить, бо в цьому разі отримуємо числа 𝑎, 𝑏, 𝑐, 𝑑, які задовольняють наше рівняння. Тому візьмемо інше значення для 𝑘:
Отже, знаючи дві четвірки чисел, які задовольняють початкове рівняння, можна знайти нову четвірку: для цього треба до чисел першої четвірки додати числа другої четвірки, помножені на 𝑘, де 𝑘 має вище вказане значення.
Для того щоб застосувати цей прийом, треба знати дві четвірки, що задовольняють початкове рівняння. Одну таку четвірку ми вже знаємо – (3, 4, 5,
Тоді для 𝑘 ми отримаємо наступне значення:
а числа
будуть відповідно дорівнювати
Очевидно, що останні чотири вирази задовольняють початкове рівняння
Оскільки всі ці вирази мають однаковий знаменник, то його можна відкинути. Отже при наше рівняння задовольняють (при будь яких 𝑟 та 𝑠 ) наступні числа:
В цьому можна впевнитись і безпосередньо, піднісши ці вирази до кубу і додавши їх. Надаючи 𝑟 та 𝑠 різні цілі значення, можемо отримати цілий ряд цілочисельних розв’язків нашого рівняння. Якщо при цьому отримані числа будуть мати спільний множник, то на нього ці числа можна поділити. Наприклад, при 𝑟=1, 𝑠=1 отримуємо для 𝑥, 𝑦, 𝑧, 𝑡 наступні значення: 36, 6, 48,
2.4 Теорема Лежандра
Розглянемо невизначене рівняння
Теорема 8.
Якщо 𝑎, 𝑏 і 𝑐 – попарно взаємно прості додатні цілі числа, вільні від квадратів, то невизначене рівняння
Має нетривіальні розв’язки в цілих числах 𝑥, 𝑦 і 𝑧, тоді і тільки тоді, коли мають розв’язки конгруенції
Доведення.
Необхідність умов (12) очевидна. Доведемо їх достатність.
Нехай 𝑝 – довільний непарний простий дільник числа 𝑐. Тоді із (12) випливає, що конгруенція
Такий же розклад правильний для форми
де
Знайдемо тепер такі лінійні форми
Для всіх простих дільників 𝑝 коефіцієнтів 𝑎, 𝑏 і 𝑐. Тоді із рівності (13) отримаємо
Будемо надавати змінним
Якщо виключити із розгляду тривіальний випадок