де
і називається дисперсією випадкової величини .Нехай
щільність розподілу випадкової величини ( або ймовірність – у дискретному випадку), вибірка з розподілу ( тобто всі мають розподіл і є незалежними випадковими величинами), реалізація вибірки. Функція є щільністю розподілу випадкового вектора . Якщо розглядається при фіксованому значенні , то така функція параметра називається функцією правдоподібності. Оцінкою максимальної правдоподібності невідомого параметра називається таке значення , при якому для заданого .Статистичною гіпотезою( або просто гіпотезою) називають будь-яке твердження щодо виду чи властивостей розподілу спостережуваної випадкової величини. Статистичні гіпотези надалі позначатимемо так:
. Статистичною параметричною гіпотезою називається припущення про значення невідомого параметра розподілу Наведемо приклади параметричних гіпотез:1)
2)
3)
де взагалі кажучи, деяка векторна функція , стала.Взагальному випадку параметрична гіпотеза задається деякою підмножиною
, до якої, за припущенням, належить невідомий параметр . Тоді параметрична гіпотеза записується так: . Альтернативна гіпотеза має вигляд: ; точки називаються альтернативами. Якщо множина містить лише одну точку, то гіпотезу ( альтернативу ) називають простою; у протилежному випадку гіпотезу( альтернативу) називають складною.Правило, згідно якого висунута гіпотеза
приймається або відкидається, називається статистичним критерієм( або просто критерієм) перевірки гіпотези .Нехай
вибірка з розподілу і висунута параметрична гіпотеза ( може бути як скаляром, так і вектором і надалі будемо вважати його вектором, якщо не обумовлено протилежне). Потрібно визначити чи узгоджується запропонована гіпотеза із результатами проведеного експерименту. У такому випадку поступають наступним чином: будують таке правило( критерій), яке дозволяє на основі отриманих реалізацій вибірки зробити висновок: прийняти гіпотезу чи відхилити її( прийняти альтернативу ). Отже, критерій розбиває вибірковий простір на дві множини такі, що , де складається із тих точок, для яких гіпотеза приймається, а множина із точок, для яких відхиляється. Множина називається областю прийняття гіпотези, а множина називається областю відхилення гіпотези, або критичною областю.У процесі перевірки гіпотези
можна прийти до правильного висновку або допустити помилку першого роду – відхилити , коли гіпотеза вірна, чи помилку другого роду – прийняти , коли вона хибна.Ймовірності цих двох помилок можна виразити через функцію потужності
критерію : . А саме: ймовірність похибки першого роду рівна , а ймовірність похибки другого роду рівна .