|P0,1,2,…,n(x) - P1,2,…,n-1(x)| < e (k£n).
При использовании ЭВМ вычисления по формуле (3) реализуются в виде рекурсивной подпрограммы - функции РХ(I, J) с формальными параметрами I, J, определяющими индексы крайних узлов интерполирования, которые используются для получения значения соответствующего многочлена Pi,i+1,…, j (x).
Для хранения вычисленных значений P(x)используется двумерный массив M размером N*N элементов, где N - максимальное число узлов интерполирования. Каждому возможному значению P(x) соответствует один из элементов M(I, J), расположенный выше главной диагонали (I < J) и определяемый сочетанием индексов крайних узлов интерполирования.
Например, значению многочлена P1,2(x) соответствует элемент M(1,2), значению P2,3,4(x) - элемент M(2, 4) и т.д. Симметричные элементы M(J, I), расположенные ниже главной диагонали (J > I), показывают, вычислены ли соответствующие значения P(x) на данный момент, и определяются как
|
Схема рекурсивной процедуры PX приведена на рис. 1, где Х- массив значений узлов интерполирования, Y- массив значений функциивузлах интерполирования, Z- значение аргумента. Параметры X, Y, Z, M должны быть описаны как общие для главной программы и подпрограммы PX.
3. Интерполяционные формулы Ньютона для равноотстоящих узлов
Узлы интерполирования x0, x1, ..., xn называются равноотстоящими, если
Существуют две формулы Ньютона для случая равноотстоящих узлов интерполирования, которые называются соответственно первой и второй интерполяционными формулами Ньютона и имеют вид:
В этих формулах Diyj - конечные разности, где i - порядок разности, j - ее порядковый номер, а параметры t и q определяются следующим образом:
t = (x - x0) / h; q = (x - xn) / h.
Конечные разности первого порядка вычисляются как Dyj = yj+1 – yj, где
j = , для более высоких порядков используется известная формула
Получаемые конечные разности удобно представлять в табличной форме записи, например, в виде табл. 1, которая называется горизонтальной таблицей конечных разностей.
x | y | Dy | D2y | D3y | D4y |
x0 | Y0 | Dy0 | D2y0 | D3y0 | D4y0 |
x1 | Y1 | Dy1 | D2y1 | D3y1 | D4y1 |
x2 | Y2 | Dy2 | D2y2 | D3y2 | |
x3 | Y3 | Dy3 | D2y3 | - | |
x4 | Y4 | Dy4 | - | - | |
x5 | Y5 | - | - | - |
Пepвая формула Ньютона применяется для интерполирования вперед и экстраполирования назад, т.е. в начале таблицы разностей, где строки заполнены и имеется достаточное число конечных разностей. При использовании этой формулы для интерполирования значение аргумента x должно лежать в интервале [x0, x1]. При этом за x0может приниматься любойузел интерполяции xk с индексом
Вторая формула Ньютона применяется для интерполирования назад и экстраполирования вперед, т.е. в конце таблицы конечных разностей. При этом значение аргумента x должно находиться в интервале [xn-1, xn], причем за xn может приниматься любой узел интерполирования
Одно из важнейших свойств конечных разностей заключается в следующем. Если конечные разности i–го порядка (i < n) постоянны, то функция представляет собой полином i–й степени. Следовательно, формула Ньютона должна быть не выше i-й степени. При использовании ЭВМ вычисление конечных разностей завершается при выполнении условий
где L - число значащих цифр после запятой в представлении значений функции.
Необходимо отметить, что формулы Ньютона являются видоизменениямиформулы Лагранжа. Однако в формуле Лагранжа нельзя пренебречь ни одним из слагаемых, так как все они равноправны и представляют многочлены n-й степени. В формулы Ньютона в качестве слагаемых входят многочлены повышающихся степеней, коэффициентами при которых служат конечные разности, разделенные на факториалы. Конечные разности, как правило, быстро уменьшаются, что позволяет в формулах Ньютона пренебречь слагаемыми, коэффициенты при которых становятся малыми. Это обеспечивает вычисление промежуточных значений функции достаточно точно спомощью простых интерполяционных формул.
4. Формула Ньютона с разделенными разностями
Первая и вторая формулы Ньютона предполагают, что узлы интерполирования являются равноотстоящими. Однако, в общем случае функция f(x) может быть задана таблицей, в которой узлы находятся на произвольном расстоянии друг от друга
При таких условиях первая и вторая интерполяционные формулы Ньютона неприменимы. В данном случае, для решения задачи интерполяции применяются не конечные, а разделенные разности.
Разделенная разность первого порядка определяется:
Для вычисления разделенных разностей высших порядков используется формула:
Разделенные разности удобно представлять диагональной таблицей, вид которой для n = 4 соответствует табл. 2.
Таблица 2
| | | | | |
| | ||||
| |||||
| | | |||
| | ||||
| | | |||
| |||||
| |
где
Представленная формула позволяет повышать точность вычислений постепенно, добавляя разделенные разности более высоких порядков. Следует отметить, что при этом все полученные результаты сохраняются, т.е. не вычисляются заново, а только наращиваются. Это следует из соотношения