Смекни!
smekni.com

Основы математического анализа (стр. 3 из 4)

Рассмотрим следующие два случая:

1) x1 = x2 = ... = xn = xn+1 = 1. Тогда сумма этих чисел равна (n + 1), и требуемое неравество выполняется;

2) хотя бы одно число отлично от единицы, пусть, например, больше единицы. Тогда, поскольку x1x2· ... ·xn·xn + 1 = 1, существует еще хотя бы одно число, отличное от единицы (точнее, меньше единицы). Пусть xn + 1 > 1 и xn < 1. Рассмотрим n положительных чисел

x1,x2,...,xn-1,(xn·xn+1).

Произведение этих чисел равно единице, и, согласно гипотезе,

x1 + x2 + ... + xn-1 + xnxn + 1 ≥ n.

Последнее неравенство переписывается следующим образом:

x1 + x2 + ... + xn-1 + xnxn+1 + xn + xn+1 ≥ n + xn + xn+1

или

x1 + x2 + ... + xn-1 + xn + xn+1 ≥ n + xn + xn+1 - xnxn+1.

Поскольку


(1 - xn)(xn+1 - 1) > 0,

n + xn + xn+1 - xnxn+1 = n + 1 + xn+1(1 - xn) - 1 + xn = = n + 1 + xn+1(1 - xn) - (1 - xn) = n + 1 + (1 - xn)(xn+1 - 1) ≥ n + 1.

Следовательно,

x1 + x2 + ... + xn + xn+1 ≥ n+1,

то есть, если P(n) справедливо, то и P(n + 1) справедливо. Неравенство доказано.

Замечание 4. Знак равенства имеет место тогда и только тогда, когда x1 = x2 = ... = xn = 1.

c) Пусть x1,x2,...,xn - произвольные положительные числа. Рассмотрим следующие n положительных чисел:

Поскольку их произведение равно единице:

согласно ранее доказанному неравенству b), следует, что

откуда


Замечание 5. Равенство выполняется если и только если x1 = x2 = ... = xn.

d) P(1) - : sin2a + cos2a = 1. ,  P(n) - :

sin2na + cos2na ≤ 1

,  P(n + 1). ,

sin2(n + 1)a + cos2(n + 1)a = sin2nasin2a + cos2nacos2a < sin2na + cos2na ≤ 1

( sin2a ≤ 1,  cos2a < 1, :  cos2a ≤ 1,  sin2a < 1). ,  n Î N sin2na + cos2n≤ 1  n = 1.

e) При n = 1 утверждение справедливо:

1 < 3/2.

Допустим, что

и докажем, что

Поскольку

учитывая P(n), получим


f) Учитывая замечание 1, проверим P(10): 210 > 103, 1024 > 1000, следовательно, для n = 10 утверждение справедливо. Предположим, что 2n > n3 (n > 10) и докажем P(n + 1), то есть 2n+1 > (n + 1)3.

Поскольку при n > 10 имеем

или
, следует, что

2n3 > n3 + 3n2 + 3n + 1 илиn3 > 3n2 + 3n + 1.

Учитывая неравенство (2n > n3), получим

2n+1 = 2n·2 = 2n + 2n > n3 + n3 > n3 + 3n2 + 3n + 1 = (n + 1)3.

Таким образом, согласно методу математической индукции, для любого  n Î N, n ≥ 10  2n > n3.

 3.,  n Î N

a) n(2n2 - 3n + 1) делится на 6,

b) 62n-2 + 3n+1 + 3n-1 делится на 11.

Решение. a) P(1) - истинное утверждение (0 делится на 6). Пусть P(n) справедливо, то есть n(2n2 - 3n + 1) = n(n - 1)(2n - 1) делится на 6. Покажем, что тогда имеет место P(n + 1), то есть, (n + 1)n(2n + 1) делится на 6. Действительно, поскольку

n(n + 1)(2n + 1) = n(n - 1 + 2)(2n - 1 + 2) = (n(n - 1) + 2n)(2n - 1 + 2) =

= n(n - 1)(2n - 1) + 2n(n - 1) + 2n(2n + 1) = n(n - 1)(2n - 1) + 2n·3n =

= n(n - 1)(2n - 1) + 6n2


и, как n(n - 1)(2n - 1), так и 6n2 делятся на 6, тогда и их сумма n(n + 1)(2n + 1) делится 6.

Таким образом, P(n + 1) - справедливое утверждение, и, следовательно, n(2n2 - 3n + 1) делится на 6 для любого n  N.

b) Проверим P(1): 60 + 32 + 30 = 11, следовательно, P(1) - справедливое утверждение. Следует доказать, что если 62n-2 + 3n+1 + 3n-1 делится на 11 (P(n)), тогда и 62n + 3n+2 + 3n также делится на 11 (P(n + 1)). Действительно, поскольку

62n + 3n+2 + 3n = 62n-2+2 + 3n+1+1 + 3n-1+1 =

= 62·62n-2 + 3·3n+1 + 3·3n-1 = 3·(62n-2 + 3n+1 + 3n-1) + 33·62n-2

и, как 62n-2 + 3n+1 + 3n-1, так и 33·62n-2 делятся на 11, тогда и их сумма 62n + 3n+2 + 3n делится на 11. Утверждение доказано.

Несобственные интегралы

Пусть функция f(x) определена на полуинтервале (a, b] и

,
; кроме того

Определение: Несобственным интегралом 1рода от f(x) на (a, b] называется предел:


если этот предел существует. В этом случае говорят, что несобственный интеграл сходится.

Пример:

Если a = 1, то

Следовательно, при a < 1 интеграл

Аналогично определяется несобственный интеграл, если

Определение несобственного интеграла 2 рода:

Пусть

:
и существует предел:


Тогда этот предел называется несобственным интегралом 2 рода, т.е.

Пример:

Если a = 1, то

Следовательно, несобственный интеграл

Для исследования сходимости и расходимости несобственных интегралов применяется признак сравнения:

Пусть функция f(x) и g(x) удовлетворяют неравенству:

и несобственный интеграл
сходится. Тогда сходится и несобственный интеграл
.

Доказательство: В силу сходимости

по критерию Коши для функции
, выполняется неравенство
. Но тогда, ввиду неравенств:
аналогично неравенство будет справедливо и для функции f(x), т.е.

Следовательно, по критерию Коши существует предел:

,

т.е. этот интеграл сходится.

Замечание1: Аналогичный признак сравнения справедлив и для несобственных интегралов 2 рода.

Замечание2: Отрицанием признака сравнения будет следующее утверждение: если несобственный интеграл

расходится, то расходится и несобственный интеграл


.

Эйлеровы интегралы G(a) и B(a, b).

Определим функцию G(a) равенством:

.