Смекни!
smekni.com

Основы математического анализа (стр. 1 из 4)

1. Множества и операции над множествами

Напомним основные обозначения, понятия, относящиеся к множествам, которых будем придерживаться дальше.

Начнем с основного понятия, которое встречается практически в каждом разделе математики - это понятие множества.

Множество - это совокупность, набор элементов, объединенных общими свойствами.

Множества обозначаются заглавными латинскими буквами

, а элементы множества строчными латинскими буквами
.

Запись

означает, что есть множество
с элементами
, которые связаны между собой какой-то функцией
.

Замечание. Элементы в множество входят по одному разу, т.е. без повторений.

Основные операции:

1. Принадлежность элемента множеству:

где

-- элемент и
-- множество (элемент
принадлежит множеству
).

2. Непринадлежность элемента множеству:


где

-- элемент и
-- множество (элемент
не принадлежит множеству
).

3. Объединение множеств:

.

Объединением двух множеств

и
называется множество
, которое состоит из элементов множеств
и
, т.е.

или

4. Пересечение множеств:

.

Пересечением двух множеств

и
называется множество
, которое состоит из общих элементов множеств
и
, т.е.

и

5. Разность множеств:

.

Разностью двух множеств

и
, например, множество
минус множество
, называется множество
, которое состоит из элементов множества
, которых нет в множестве
, т.е.

и

6. Симметрическая разность множеств:

.

Симметрической разностью двух множеств

и
называется множество
, которое состоит из не общих элементов множеств
и
, т.е.

7. Дополнение множества:

.

Если предположим, что множество

является подмножеством некоторого универсального множества
, тогда определяется операция дополнения:

и

8. Вхождение одного множества в другое множество:

.

Если любой элемент множества

является элементом множества
, то говорят, что множество
есть подмножество множества
(множество
входит в множество
).

9. Не вхождение одного множества в другое множество:

.

Если существует элемент множества

, который не является элементом множества
, то говорят, что множество
не подмножество множества
(множество
не входит в множество
).

2. Первая и вторая теорема Вейерштрасса

Теорема (первая теорема Вейерштрасса)Если функция непрерывна на сегменте, то она ограничена на нем.Доказательство: методом от противного, воспользуемся свойством замкнутости сегмента [a;b]. Из любой последовательности (xn) этого сегмента можем выделить подпоследовательность xnk, сходящуюся к x0∈[a;b] .Пусть f не ограничена на сегменте [a;b], например, сверху, тогда для всякого натуральногоn∈Nнайдется точка xn∈[a;b] , что f(xn)>n. Придавая n значения 1,2,3,{\ldots}, мы получим последовательность (xn) точек сегмента [a;b], для которых выполнено свойство f(x1)>1,f(x2)>2,f(x3)>3,...,f(xn)>n... Последовательность (xn) ограничена и поэтому из нее по теореме можно выделить подпоследовательность(xnk) , которая сходится к точке x0∈[a;b] : limk→∞xnk=x0 (1)Рассмотрим соответствующую последовательность (f(xnk)) . С одной стороны f(xnk)>nkи поэтому limk→∞f(xnk)=+∞(2),С другой стороны, учитывая определение непрерывной функции по Гейне из (1) будем иметь limk→∞f(xnk)=f(x0) (3)Получаем равенства (2) и (3) противоречат теореме (о единственности предела). Это противоречие и доказывает справедливость теоремы. Аналогично доказывается ограниченность функции снизу. Ч.Т.Д.

Замечание 1Таким образом, если f непрерывна на [a;b], то ее множество значений ограничено и поэтому существует конечные верхняя и нижняя грань функции.c=infx∈[a;b]f(x),d=supx∈[a;b]f(x), но открыт вопрос о достижении функции своих граней.Замечание 2Если слово сегмент в условии теоремы заменить словом интервал или полуинтервал, то теорема может и нарушиться. Пример, y=tgx,tgx∈C((−2π;2π)) , но функция не ограничена на этом интервале.

Теорема (вторая теорема Вейерштрасса)Если функция непрерывна на сегменте, то она достигает на нем своих граней (т.е. непрерывная на сегменте функция принимает свое наибольшее и наименьшее значения).Доказательство: Пусть f(x)∈C([a;b]) , c=infx∈[a;b]f(x), d=supx∈[a;b]f(x). По первой теореме Вейерштрасса c,d∈R. Докажем, что f достигает на [a;b] своих граней, т.е. найдутся такие точки x1,x2∈[a;b] , чтоf(x1)=c,f(x2)=d.Докажем, например, существование точки x2.

По определению верхней грани имеем (∀x∈[a;b])(f(x)=d) . Предположим противное, т.е. точки x2, в которой f(x2)=dна [a;b], тогда на [a;b] выполняется условиеf(x)<d или d−f(x)>0 . Далее введем вспомогательную функцию ϕ(x)=1d−f(x). ϕ(x)на [a;b] положительна и непрерывна (как отношение двух непрерывных на [a;b] функций и d−f(x)/=0) , поэтому по первой Т. Вейерштрасса ϕ(x)на [a;b] ограничена. Это означает, что при некотором М>0 (∀x∈[a;b])(0<1d−f(x)≤M) , отсюда имеем f(x)≤d−1M<d. Полученное неравенство противоречит тому, что d является верхней гранью функции f(x) на [a;b], т.е. наименьшим из верхних границ. Полученное противоречие и означает существование точки x2 такой, что f(x2)=d.