Відповідь:
Приклад 2. Вирішити рівняння
Рішення.
Отже, ліва частина рівняння приймає ненегативне значення тільки при
Перевірка показує, що 5 є коренем вихідного рівняння.
Відповідь: {5}.
3.1.3 Використання монотонності функції
Рішення рівнянь і нерівностей з використанням властивостей монотонності ґрунтується на наступних твердженнях.
1. Нехай f(x) - безперервна й строго монотонна функція на проміжку Q, тоді рівняння f(x)=c, де c - дана константа може мати не більше одного рішення на проміжку Q.
2. Нехай f(x) і g(x) - безперервні на проміжку Q функції, f(x) - строго зростає, а g(x)- строго убуває на цьому проміжку, тоді рівняння f(x)= g(x) може мати не більше одного рішення на проміжку Q.
Відзначимо, що в кожному з випадків проміжки Q можуть мати один з видів:
Приклад 1. Вирішимо рівняння
Рішення. Знайдемо ОПЗ змінної х.
ОПЗ:
Отже,
На ОПЗ функції
Відповідь: {2}.
3.1.4 Використання обмеженості функції
Якщо при рішенні рівняння
Приклад 1. Вирішити рівняння
Рішення. Функції, що коштують у різних частинах рівняння, визначені на
Вирішимо друге рівняння системи:
Тоді
Перевірка показує, що 0 є коренем даного рівняння, а - 1-не є.
Відповідь:{0}.
Приклад 2. Вирішити рівняння
Рішення. Оцінимо підкореневі вираження.
Отже,
Так як перший доданок лівої частини вихідного рівняння обмежено знизу одиницею, а другий доданок-3, те їхня сума обмежена знизу 4. Тоді ліва частина рівняння стає рівної правої частини рівняння при
Відповідь:{2}.
3.2 Застосування похідної
У вищенаведених рівняннях були розглянуті застосування деяких властивостей функції, що входять у рівняння. Наприклад, властивості монотонності, обмеженості, існування найбільшого й найменшого значень і т.д. Іноді питання про монотонність, про обмеженість і, особливо, про знаходження найбільшого й найменшого значень функції елементарними методами вимагає трудомістких і тонких досліджень, однак він істотно спрощується при застосуванні похідної. (Наприклад, не завжди можна догадатися, як і яка нерівність застосувати з «класичних»).
Розглянемо застосування похідної при рішенні рівнянь.
3.2.1 Використання монотонності функції
Надалі ми будемо користуватися наступними твердженнями:
1) якщо функція f(x) має позитивну похідну на проміжку М,
2) якщо функція
3) якщо функція
Приклад 1. Вирішити рівняння
Рішення. Розглянемо функцію
На цьому проміжку
Ця похідна позитивна усередині проміжку
Відповідь:
3.2.2 Використання найбільшого й найменшого значень функції
Справедливі наступні твердження:
найбільше (найменше) значення безперервної функції, прийняте на інтервалі
щоб знайти найбільше й найменше значення безперервної на відрізку
Приклад 1. Вирішити рівняння
Рішення. Знайдемо ОПЗ змінної x.
ОПЗ:
Розглянемо безперервну функцію
Функція f(x) на інтервалі (2;4) має похідну: