Задача 5. Решить задачу Коши:
Решение:
- линейное уравнениеВоспользуемся методом интегрирующего множителя:
Ответ:
Задача 6. Найти решение задачи Коши:
, y(0)=1Решение:
- уравнение БернуллиПодёлим данное уравнение на (:y2):
Произведём замену и подставим её в исходное уравнение:
z=y-1
Следовательно:
- линейное уравнениеВоспользуемся методом Бернулли:
Откуда:
Найдём значение С2
Следовательно:
Ответ:
Задача 7. Найти общий интеграл дифференциального уравнения:
Решение:
- дифференциальное уравнение в полных дифференциалах
Следовательно, левая часть уравнения является полным дифференциалом некоторой функции
(*)Интегрируем по x первое из уравнений (*), при этом считаем, что С является функцией от y:
Дифференцируя полученное, имеем:
Но
Откуда:
Следовательно:
Ответ:
Задача 8. Для данного дифференциального уравнения методом изоклин построить интегральную кривую, проходящую через точку М.
Решение:
Чтобы решить данное дифференциальное уравнение необходимо построить семейство изоклин, показать на них угол наклона касательных и построить интегральные кривые таким образом, чтобы они пересекали изоклины под соответствующим углом:
Откуда
В результате получим следующий график:
Задача 9. Найти линию, проходящую через точку М0 и обладающую тем свойством, что в любой точке М нормальный вектор
с концом на оси ординат имеет длину равную а и образует угол с положительным направлением оси ординат. М0(6;4), a=10Решение:
Подставляя значения функции в точке M найдём значение С:
Ответ:
Задача 10. Найти общее решение дифференциального уравнения:
Решение:
- дифференциальное уравнение третьего порядкаПусть
Подставив в исходное уравнение, получим:
Проинтегрируем и поделим на х данное выражение:
Следовательно:
Разделяя переменные и вновь интегрируя, получим:
Повторяем процедуру в третий раз и получаем искомое выражение для y
Ответ:
Задача 11. Найти общее решение дифференциального уравнения:
Решение:
Данное уравнение не содержит х в явном виде
Предположим, что
откудаТогда исходное уравнение будет выглядеть так:
Разделим переменные и проинтегрируем выражение:
Но
. ТогдаОднако:
. Поэтому разделим переменные и проинтегрируем выражение:Выясним значение С2:
Следовательно:
Ответ:
Задача 12. Найти общее решение дифференциального уравнения:
Решение:
- НЛДУ четвёртого порядкаРешение будет записано в виде: