Тогда, если P(A)ÌG, то r(P(A))=0.
Доказательство. Не трудно проверить, что для матрицы А с ненулевыми элементами из G (т.е. P(A)ÌG) имеет место равенство А2=0, т.е. А – нильпотентная матрица индекса 2 и следовательно у нее единственное собственное значение 0.
Теорема доказана.
Теорема 3.4 Пусть AÎDm. Пусть Q0 -минимальная подрешетка содержащая P(A), (Q0ÉP(A)) такая, что в каждой строке и в каждом столбце находится хотя бы один элемент соответствующий нулевому элементу матрицы A.
Пусть Ad – матрица, полученная из матрицы A добавлением элемента со значением d>0 в одно из свободных мест, тогда
Доказательство.
Так как норма оператора не зависит от перестановки строк и столбцов матрицы, то можно считать, что решетка A0={(i,j), i=1,…,l; j=1,…,m} расположена в левом верхнем углу матрицы A. Пусть добавлен еще один ненулевой элемент d с координатами (i0,j0) вне решетки Q0. Возможны три случая:
1) 1 ≤ i0 ≤ l, j0 > m;
2) i0 > l, 1 ≤ j0 ≤ m;
3) i0 > l, j0 > m.
Рассмотрим первый случай. Не уменьшая общности положим, что этот ненулевой элемент соответствует индексу (1, m+1). По условию теоремы в каждой строке и в каждом столбце имеется хотя бы один нулевой элемент и мы можем предположить, что a1m=0. Получаем:
Используя неравенства
,имеем:
Пусть z1=x1, z2=x2,…,zm=
и ,тогда
где элемент
имеет координаты (1,m).Следовательно
Рассмотрим второй случай. Пусть добавленный ненулевой элемент соответствует индексу (l+1,1). Учитывая, что в каждой строке и в каждом столбце решетки есть хотя бы один ненулевой элемент и то, что от перестановки строк норма матрицы не меняется, мы можем предположить, что al1=0. Аналогично первому случаю имеем:
.Используя неравенства
,получаем:
.Пусть z1=y1, z2=y2,…,zm=
и ,тогда
где элемент
имеет координаты (l,1). СледовательноРассмотрим последний случай. Не уменьшая общности положим, что этот ненулевой элемент соответствует индексу (l+1, m+1). В этом случае нужно учесть, что от перестановки строк и столбцов норма матрицы не изменится, поэтому можно положить, что alm=0. Рассуждая также, как и в предыдущих случаях, получаем:
где элемент
имеет координаты (l,m).Теорема доказана. Аналогичные задачи для интегральных операторов были рассмотрены в работах [1], [5].
4. Некоторые интерполяционные свойства семейств конечномерных пространств
Пусть 1 ≤ p < ∞, 1 ≤ q ≤ ∞. Определим семейство конечномерных пространств:
где
невозрастающая перестановка последовательности . Обозначим через –множество всех непустых подмножеств из {1,2,...N} Пусть M , 1 ≤ p < ∞, 1 ≤ q ≤ ∞, множество M назовем сетью.Определим семейство конечномерных пространств
|e| - количество элементов множества e.
При q=∞ положим
Данные пространства являются конечномерными аналогами сетевых пространств, введенных в [1].
Будем говорить что {AN} ↪ {BN} если существует константа c, такая что
для любого , где c не зависит от .Лемма 4.1 Пусть 1 ≤ q <q1≤ ∞, 1 ≤ p ≤ ∞,
. Тогда имеет место вложение ↪то есть
где с не зависит от выбора N.
Доказательство. Пусть
(1)то есть
↪Теперь рассмотрим случай, когда 1 ≤ q <q1< ∞, и воспользуемся неравенством (1)
Лемма доказана.
Лемма 4.2 Пусть 1≤p<p1<∞, 1≤q,q1≤∞. Тогда имеем место вложение
↪Доказательство.
Согласно условию леммы, нам достаточно доказать вложения при p < p1 :
Получаем:
Лемма доказана.
Лемма 4.3 Пусть 1<p<∞, 1≤q≤∞, M=
. ТогдаРавенства понимаются с точностью до эквивалентности норм, причем константы не зависят от
.Доказательство. Сначала докажем соотношение:
(2)Заметим, что
Поэтому
Теперь покажем обратное неравенство. Пусть
. Учитывая выбор имеем.