Министерство образования и науки республики Казахстан
Северо-Казахстанский государственный университет
им. М. Козыбаева
Факультет информационных технологий
Кафедра математики
Курсовая работа
"Некоторые интерполяционные свойства конечномерных сетевых пространств и пространств Лоренца"
Петропавловск, 2007
Аннотация
В данной курсовой работе исследованы свойства некоторых семейств конечномерных пространств и доказаны интерполяционные теоремы для этих классов пространств.
Содержание
Введение
1. Основные понятия и некоторые классические теоремы теории интерполяции
2. Общие свойства интерполяционных пространств
3. О норме и спектральном радиусе неотрицательныхматриц
4. Некоторые интерполяционные свойства семейств конечномерных пространств
Заключение
Список использованной литературы
Теория интерполяции функциональных пространств как самостоятельная ветвь функционального анализа сформировалась за последние 40-45 лет. Она играет все возрастающую роль в анализе и его приложениях. Центральной темой теории является проблема интерполяции линейных операторов. Эта проблема тесно связана с задачей построения совокупности "промежуточных" пространств – арены, на которой действуют "промежуточные" операторы. Основополагающий вклад в теорию был сделан Эл.-Л. Лионсом, А.П. Кальдероном и С.Г. Крейном. При этом не следует, конечно, забывать, что исследованием названных авторов предшествовали (и стимулировали их) классические теоремы Рисса и Марцинкевича об интерполяции линейных операторов в пространствах lp.
Теория интерполяция также применяется в других областях анализа (например, в теории уравнений с частными производными, численном анализе, теории аппроксимации). Рассматривают два существенно различных интерполяционных метода: метод вещественной интерполяции и метод комплексной интерполяции. Модельными примерами для этих методов служат доказательства теоремы Марцинкевича и теоремы Рисса-Торина соответственно. Один из самых ранних примеров интерполяции линейных операторов был предложен Шуром. Шур сформулировал свой результат для билинейных форм, или вернее для матриц, соответствующих этим формам. В 1926 году М. Рисс доказал первую версию теоремы Рисса-Торина с ограничением p≤q, которое как он показал, существенно в случае, когда в качестве скаляров берутся вещественные числа. Основным рабочим инструментом Рисса было неравенство Гельдера. Но в 1938 году Торин привел совершенно новое доказательство и смог устранить ограничение p≤q. В то время как Рисс пользовался вещественными скалярами и неравенством Гельдера, Торин использовал комплексные скаляры и принцип максимума.
1. Основные понятия и некоторые классические теоремы теории интерполяции
Пусть (u,μ) – пространство с мерой μ, которую будем всегда предполагать положительной. Две рассматриваемые функции будем считать равными, если они отличаются друг от друга лишь на множестве нулевой μ-меры. При этом обозначим через lp(u,dμ) или просто (lp(dμ), lp(u) или lp) лебегово пространство всех скалярнозначных μ-измерных функций f и u, для которых величина
конечна, здесь 1≤p<∞.
В случае, когда p=∞, пространство lp состоит из всех μ-измеримых ограниченных функций. В этом случае
Пусть T- линейное отображение пространства lp=lp(u,dμ) в пространство lq=lq(v,dν). Это означает, что T(αf+βg)=αT(f)+βT(g).
Если к тому же T- ограниченное отображение, то есть если величина конечна, то пишут T: lp®lq.
Число μ называется нормой отображения T. Справедливы следующие известные теоремы:
Теорема 1.1 (интерполяционная теорема Рисса-Торина)
Предположим, что
Тогда T:
Неравенство (*) означает, что μ как функция от θ логарифмически выпукла, то есть lnμ – выпуклая функция.
Доказательство теоремы приведено в [1].
Для скалярнозначной μ-измерной функции f, принимающей почти всюду конечные значения, введем функцию распределения m(σ,f) по формуле
Ясно, что m(σ,f) представляет собой вещественнозначную функцию от σ, определенную на положительной вещественной полуоси
и
Используя функцию распределения m(σ,f), введем теперь слабые lp-пространства, обозначаемые через
В предельном случае p=∞, положим
Заметим, что
Действительно, ясно, что
Применяя неравенство
Последнее означает, что
Теорема 1.2 (Интерполяционная теорема Марцинкевича)
Пусть p0≠p1 и
T:
T:
Положим
Тогда T:
Эта теорема, напоминает теорему Рисса-Торина, но отличается от нее во многих важных отношениях.
Во-первых, здесь скаляры могут быть как вещественными, так и комплексными, в то время как в теореме Рисса-Торина обязательно нужно, чтобы скаляры были комплексными. Во-вторых здесь имеется ограничение p≤q. Наиболее важная особенность состоит в том, что в предпосылках теоремы пространства
Таким образом, теорема Марцинкевича может оказаться применимой в тех случаях, где теорема Рисса-Торина уже не работает.
Пусть A- векторное пространство над полем вещественных или комплексных чисел. Оно называется нормированным векторных пространством, если существует вещественнозначная функция (норма)