Рис. 1
На отрезке
Как выгодно размещать точки? Всякий раз мы делим оставшийся отрезок на три части (причем одна из точек деления уже определена предыдущими вычислениями) и затем отбрасываем один из крайних отрезков. Очевидно, надо, чтобы следующий отрезок был поделен подобно предыдущему. Для этого должны выполняться соотношения
Решение этих уравнений дает
После проведения очередного вычисления отрезок сокращается в
Запишем алгоритм вычисления. Для единообразия записи обозначим
а поочередно вводимые внутренние точки будут
После сравнения может быть отброшена точка с любым номером, так что на следующих шагах оставшиеся точки будут перенумерованы беспорядочно. Пусть на данном отрезке есть четыре точки
Затем отбрасываем ту точку, которая более всего удалена[3] от
Определим порядок расположения оставшихся трех точек на числовой оси; пусть, для определенности,
Тогда новую внутреннюю точку введем таким соотношением[4]:
и присвоим ей очередной номер. Минимум находится где-то внутри последнего отрезка,
Метод золотого сечения является наиболее экономичным аналогом метода дихотомии применительно к задачам на минимум. Он применим даже к недифференцируемым функциям и всегда сходится; сходимость его линейна. Если на отрезке
Этот метод нередко применяют в технических или экономических задачах оптимизации, когда минимизируемая функция недифференцируема, а каждое вычисление функции – это дорогой эксперимент.
Метод золотого сечения рассчитан на детерминированные задачи. В стохастических задачах из-за ошибок эксперимента можно неправильно определить соотношение между значениями функций в точках; тогда дальнейшие итерации пойдут по ложному пути. Поэтому если различия функций в выбранных точках стали того же порядка, что и ошибки эксперимента, то итерации надо прекращать. Поскольку вблизи минимума чаще всего
2. Минимум функции многих переменных
2.1 Рельеф функции
Основные трудности многомерного случая удобно рассмотреть на примере функции двух переменных
а) б)
| |
в)
Рис. 2 г)
При котловинном рельефе линии уровня похожи на эллипсы (рис. 1, а). В малой окрестности невырожденного минимума рельеф функции котловинный. В самом деле, точка минимума гладкой функции определяется необходимыми условиями
и разложение функции по формуле Тейлора вблизи минимума имеет вид
причем квадратичная форма (12) – положительно определенная[5], иначе эта точка не была бы невырожденным минимумом. А линии уровня знакоопределенной квадратичной формы – это эллипсы.