2.4 Случайный поиск
Методы спуска неполноценны на неупорядоченном рельефе. Если локальных экстремумов много, то спуск из одного нулевого приближения может сойтись только к одному из локальных минимумов, не обязательно абсолютному. Тогда для исследования задачи применяют случайный поиск.
Предполагают, что интересующий нас минимум (или все минимумы) лежит в некоторой замкнутой области; линейным преобразованием координат помещают ее внутрь единичного
-мерного куба. Выбирают в этом кубе случайных точек.Даже при миллионе пробных точек вероятность того, что хотя бы одна точка попадет в небольшую окрестность локального минимума, ничтожно мала. В самом деле, пусть диаметр котловины около минимума составляет
от пределов изменения каждой координаты. Тогда объем этой котловины составляет часть объема -мерного куба. Уже при ни одна точка в котловину не попадет.Поэтому берут небольшое число точек
и каждую точку рассматривают как нулевое приближение. Из каждой точки совершают спуск, быстро попадая в ближайший овраг или котловину; когда шаги спуска сильно укорачиваются, его прекращают, не добиваясь высокой точности. Этого уже достаточно, чтобы судить о величине функции в ближайшем локальном минимуме с удовлетворительной точностью.Сравнивая (визуально или при помощи программы) окончательные значения функции на всех спусках между собой, можно изучить расположение локальных минимумов функции и сопоставить их величины. После этого можно отобрать нужные по смыслу задачи минимумы и провести в них дополнительные спуски для получения координат точек минимума с высокой точностью.
Обычно в прикладных задачах нужно в первую очередь добиться того, чтобы исследуемая функция приняла минимальное или почти минимальное значение. Но вблизи минимума значение функции слабо зависит от изменения координат. Зачем тогда нужно находить координаты точки минимума с высокой точностью? Оказывается, что это имеет не только теоретический, но и практический смысл.
Пусть, например, координаты – это размеры деталей механической конструкции, а минимизируемая функция есть мера качества конструкции. Если мы нашли минимум точно, то мы находимся в самом центре котловины около минимума. В этом случае вариации координат влияют на функцию слабее, чем в точках, расположенных ближе к краям котловины. А безопасные вариации координат имеют в данном примере смысл допусков на точность обработки деталей. Значит, при аккуратном вычислении координат минимума мы можем разрешить большие допуски, т. е. удешевить обработку деталей.
Метод случайного поиска зачастую позволяет найти все локальные минимумы функции от 10-20 переменных со сложным рельефом. Он полезен и при исследовании функции с единственным минимумом; в этом случае можно обойтись заметно меньшим числом случайных точек. Недостаток метода в том, что надо заранее задать область, в которой выбираются случайные точки. Если мы зададим слишком широкую область, то ее труднее детально исследовать, а если выберем слишком узкую область, то многие локальные минимумы могут оказаться вне ее. Правда, положение несколько облегчается тем, что при спусках траектории могут выйти за пределы заданной области и сойтись к лежащим вне этой области минимумам.
В работе рассматривались методы нахождения минимума функции одной переменной и функции многих переменных. Поиск минимума функции одной переменной осуществлялся методом золотого сечения, поиск минимума функции многих переменных представлен методами покоординатного спуска, наискорейшего спуска и др.
1. Калиткин Н.Н. Численные методы. М.: Наука, 1978. 512с.
2. Амосов А.А., Дубинский Ю.А., Копченова Н. В. Вычислительные методы для инженеров. М.: Высшая школа, 1994. 543с.
3. Ракитин В.И., Первушин В.Е. Практическое руководство по методам вычислений. М.: Высшая школа, 1998. 383с.
Приложение 1
Листинг программы:
{Методом покоординатного спуска найти точки локального минимума функции Химмельблау f(x)=(x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7) с точностью e=0.01}
program spusk;
uses crt;
const n=2; k=2;
type vector=array[1..n] of real;
var i:integer;
d,e,e1,h,h1,z:real;
x:vector; ch:char;
procedure pausa;
begin
writeln;
writeln ('Длявыходанажмителюбуюклавишу…');
repeat ch:=readkey until ch <> '';
end;
function f(x:vector):real;
var a,b:real;
begin a:=x[1]*x[1]+x[2]-11;
b:=x[1]+x[2]*x[2]-7;
f:=a*a+b*b;
end;
procedure scan (i:integer);
var a:boolean;
d1,z1:real;
begin z:=f(x);
repeat d1:=abs(h1); x[i]:=x[i]+h1; z1:=f(x); a:=(z1>=z);
if a then h1:=-h1/k;
z:=z1;
until a and (d1<e1);
end;
begin
clrscr;
writeln ('Введите координаты начального вектора (x1,x2):');
for i:=1 to n do read (x[i]);
writeln ('Задайте точность нахождения точки minf(x):');
read (e);
h:=0.2; e1:=e/k;
repeat d:=abs(h);
for i:=1 to n do
begin
h1:=h; scan (i);
end;
h:=h/k;
until d<e;
writeln ('Точка минимума: x1=',x[1]:9:6,' ','x2=',x[2]:9:6);
writeln ('Погрешность:',e:9:6);
pausa;
end.
Приложение 2
Результат работы программы:
Введите координаты начального вектора (x1,x2):
1
2
Задайте точность нахождения точки min f(x):
0.01
Точка минимума: x1= 2.996875 x2= 2.000000
Погрешность: 0.010000
Для выхода нажмите любую клавишу.
[1] Множество компактно, если из каждого бесконечного и ограниченного его подмножества можно выделить сходящуюся последовательность.
[2] Множество замкнуто, если предел любой сходящейся последовательности его элементов принадлежит этому множеству.
[3] Это верно не при всяких делениях отрезка, но для деления в соответствии (4) это справедливо.
[4] См. предыдущую сноску.
[5] Квадратичная форма
называется положительно определенной, если при любых (за исключением обращающихся одновременно в нуль) она положительна.