Смекни!
smekni.com

Минимум функции многих переменных (стр. 1 из 5)

РЕФЕРАТ

В работе рассматриваются методы нахождения минимума функции одной переменной и функции многих переменных.

Пояснительная записка к курсовой работе состоит из двух основных частей: теоретической и практической.

В теоретической части рассматривается поиск минимума функции одной переменной методом золотого сечения, поиск минимума функции многих переменных – методами покоординатного спуска, наискорейшего спуска и случайного поиска.

Практическая часть содержит разработку программного обеспечения вычисления локального минимума функции Химмельблау методом покоординатного спуска, реализованную на языке Pascal.

Объем пояснительной записки: 1

Количество рисунков: 4

Количество используемых источников: 3


СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. Минимум функции одного переменного

1.1 Постановка задачи

1.2 Золотое сечение

2. Минимум функции многих переменных

2.1 Рельеф функции

2.2 Спуск по координатам

2.3 Наискорейший спуск

2.4 Случайный поиск

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Приложение 1

Приложение 2


ВВЕДЕНИЕ

В работе рассмотрены способы нахождения такого значения аргумента, которое минимизирует некоторую зависящую от него скалярную величину. В параграфе 1 изложена задача о минимуме функции одного переменного, лежащая в основе всех более сложных задач. В параграфе 2 рассмотрена задача о минимуме функции многих переменных в неограниченной области.


1. Минимум функции одного переменного

1.1 Постановка задачи.

Пусть имеется некоторое множество

, состоящее из элементов
, принадлежащих какому-нибудь метрическому пространству, и на нем определена скалярная функция
. Говорят, что
имеет локальный минимум на элементе
, если существует некоторая конечная
-окрестность этого элемента, в которой выполняется

. (1)

У функции может быть много локальных минимумов. Если же выполняется

, (2)

то говорят о достижении функцией абсолютного минимума на данном множестве

.

Потребуем, чтобы функция

была непрерывной или, по крайней мере, кусочно-непрерывной, а множество
было компактно[1] и замкнуто[2] (в частности, если
само является пространством, то это пространство должно быть банаховым). Если эти требования не соблюдены, то вряд ли возможно построить разумный алгоритм нахождения решения. Например, если
не является кусочно-непрерывной, то единственным способом решения задачи является перебор всех элементов
, на которых задана функция; этот способ нельзя считать приемлемым. Чем более жестким требованиям удовлетворяет
(таким, как существование непрерывных производных различного порядка), тем легче построить хорошие численные алгоритмы.

Перечислим наиболее важные примеры множеств, на которых приходится решать задачу нахождения минимума. Если множество

является числовой осью, то (1) и (2) есть задача на минимум функции одного вещественного переменного. Если
есть
-мерное векторное пространство, то мы имеем дело с задачей на минимум функции
переменных. Если
есть пространство функций
, то (1) называют задачей на минимум функционала.

Для нахождения абсолютного минимума есть только один способ: найти все локальные минимумы, сравнить их и выбрать наименьшее значение. Поэтому задача (2) сводится к задаче (1), и мы будем в основном заниматься задачей поиска локальных минимумов.

Известно, что решение задачи (1) удовлетворяет уравнению

. (3)

Если множество

есть числовая ось, то написанная здесь производная является обычной производной, и тогда уравнение (3) есть просто одно (нелинейное) уравнение с одним неизвестным. Для
-мерного векторного пространства соотношение (3) оказывается системой нелинейных уравнений
. Для пространства функций уравнение (3) является дифференциальным или интегро-дифференциальным. В принципе такие уравнения можно решать итерационными методами. Однако эти уравнения нередко имеют сложный вид, так что итерационные методы их решения могут очень плохо сходиться или вообще не сходиться. Поэтому в данной главе мы рассмотрим численные методы, применимые непосредственно к задаче (1), без приведения ее к форме (3).

Пусть

является некоторым множеством, принадлежащим какому-то пространству. Тогда (1) называют задачей на минимум в ограниченной области. В частности, если множество
выделено из пространства с помощью ограничивающих условий типа равенств, то задачу (1) называют задачей на условный экстремум; такие задачи методом неопределенных множителей Лагранжа часто можно свести к задачам на безусловный экстремум. Однако при численном решении обычно удобнее иметь дело непосредственно с исходной задачей (1), хотя при ее решении в ограниченной области возникают свои трудности.

Функция

может иметь на множестве
более одного локального минимума. В конкретных прикладных задачах далеко не всегда удается заранее исследовать свойства функции. Поэтому желательно, чтобы численный алгоритм позволял определить число минимумов и их расположение и аккуратно найти абсолютный минимум.

Задачу называют детерминированной, если погрешностью вычисления (или экспериментального определения) функции

можно пренебречь. В противном случае задачу называют стохастической. Мы будем рассматривать в основном детерминированные задачи. Для решения стохастических задач есть специальные методы, но они очень медленные, и применять их к детерминированным задачам невыгодно.

1.2 Золотое сечение

В этом параграфе мы рассмотрим задачу нахождения минимума функции одной действительной переменной. Эта одномерная задача нередко возникает в практических приложениях. Кроме того, большинство методов решения многомерных задач сводится к поиску одномерного минимума.

Сейчас мы рассмотрим метод золотого сечения, применимый к недифференцируемым функциям. Будем считать, что

задана и кусочно-непрерывна на отрезке
, и имеет на этом отрезке (включая его концы) только один локальный минимум. Построим итерационный процесс, сходящийся к этому минимуму.

Вычислим функцию на концах отрезка, а также в двух внутренних точках
, сравним все четыре значения функции между собой и выберем среди них наименьшее. Пусть наименьшим оказалось
. Очевидно, минимум расположен в одном из прилегающих к нему отрезков (см. рис. 1). Поэтому отрезок
можно отбросить и оставить отрезок
. Первый шаг процесса сделан.

ax1 x3x2 b