Смекни!
smekni.com

Теорія систем та системний аналіз (стр. 3 из 4)

і шкала відношень = ах, а ≠ 0). Розглянемо особливості шкал, інваріантних до зміщення

у = х + b.

Повторно застосовуючи зміщення до у (z = у + b = х + 2b), а потім до z і так далі, виявляємо, що в такій шкалі значення не змінюється після будь-якої кількості зміщень:

у = х + пb, п = 0,1,2,....

Стала величина b— це параметр шкали, який називається її періодом. Отриману шкалу називають шкалою різниць (іноді — також циклічною чи періодичною). У таких шкалах вимірюють напрямок з однієї точки (шкала компаса, роза вітрів тощо), час доби (циферблат годинника), фазу коливань (у градусах або радіанах).

Циклічні шкали — частинний випадок інтервальних. Однак угода про хоча й довільний, але єдиний для нас початок відліку шкали дає змогу розглядати показання в цій шкалі як числа, застосовувати до них арифметичні дії (доти, доки хтось не забуде про умовність нуля, наприклад у разі переходу на літній час або навпаки).

1.8 Абсолютна шкала

Розглянемо шкалу з абсолютним нулем і абсолютною одиницею. Вона не єдина з точністю до якогось перетворення, а просто єдина, унікальна. Саме такі якості має числова вісь, яку природно назвати абсолютною шкалою. Важлива особливість абсолютної шкали порівняно з усіма іншими — абстрагованість (безрозмірність) і абсолютність її одиниці. Це дає змогу виконувати над показаннями абсолютної шкали операції, неприпустимі дА показань інших шкал, — використовувати їх як показник степеня й аргумент логарифма. Числову вісь явно використовують як вимірювальну шкалу для лічби предметів, а також як допоміжний засіб — у всіх інших шкалах. Внутрішні властивості числової осі, попри ілюзорну її простоту, надзвичайно різноманітні, і теорія чисел дотепер не вичерпала їх.

Основні відомості про всі розглянуті нами вимірювальні шкали наведено в табл. 2. Можна сказати, що чим сильніша шкала, у якій виконують вимірювання, тим більше інформації про досліджуваний об'єкт, явище чи процес можна отримати. Тому природним є прагнення кожного дослідника провести вимірювання в якнайсильнішій шкалі.

Вибираючи шкалу вимірювання, слід орієнтуватися на об'єктивні відношення, яким підпорядкована спостережувана величина, і найкраще робити вимірювання в шкалі, яка максимально погоджена з цими відношеннями. Можна вимірювати й у слабшій шкалі, ніж узгоджена, але застосовувати сильнішу шкалу небезпечно: отримані дані не матимуть тієї сили, на яку орієнтовано їх обробку.

2. Емерджентність

Операція агрегування, тобто об'єднання декількох елементів у єдине ціле, протилежна до декомпозиції. Агрегування може бути потрібне для різних цілей і супроводжуватися різними обставинами, тому є різні (іноді принципово різні) його способи. Однак у всіх агрегатів (так називають результат агрегування) є одна загальна властивість, яка одержала назву емерджентності. Вона притаманна всім системам, і внаслідок її важливості зупинімося на ній докладніше.

2.1 Емерджентність як прояв внутрішньої цілісності системи

Об'єднані елементи, що взаємодіють, утворюють систему, якій властиві не тільки зовнішня цілісність, відокремленість від навколишнього середовища, але й внутрішня цілісність, природна єдність. Якщо зовнішню цілісність відображає модель "чорного ящика", то внутрішня пов'язана зі структурою системи. Найяскравіший прояв внутрішньої цілісності системи полягає в тому, що властивості системи — не лише сума властивостей її складових. Система — це щось більше; вона має такі властивості, яких немає в жодної з її частин, узятої окремо.

2.2 Емерджентність як результат агрегування

Таке "раптове" виникнення нових якостей системи дало підставу назвати цю властивість емерджентністю. Властивість емерджентності визнано й офіційно: під час державної експертизи винаходів патентоспроможним визнають і нове, раніше невідоме поєднання добре відомих елементів, якщо при цьому виникають нові корисні властивості.

Виникнення якісно нових властивостей у разі агрегування елементів — частинний, але яскравий прояв загального закону діалектики — переходу кількості в якість. Чим більше відрізняються властивості сукупності від суми властивостей елементів, тим вища організованість системи. Так, фізик А. Еддінгтон писав: "Нерідко думають, що, вивчивши один якийсь об'єкт, знають уже все про два точно таких самих об'єкти, тому що "два" — це "один і один". При цьому, однак, забувають, що потрібно досліджувати ще й те, що криється за цим "і". Вивченням цього "і", тобто розглядом організації, займається, можна сказати, вторинна фізика".

Кібернетик У. Ешбі показав, що в системи тим більше можливостей у виборі поведінки, чим вищий ступінь погодженості поводження її частин.

Отже, агрегування частин у єдине ціле зумовлює виникнення нових якостей, які не зводяться до якостей окремих частин. Ця властивість — прояв внутрішньої цілісності систем, чи, як іще говорять, системотвірний фактор. Нові якості систем дуже сильно залежать від характеру зв'язків між частинами й можуть варіюватисяв дуже широкому діапазоні – від повного узгодження до повної незалежності частин.


3. Практична частина

Задача 1

За заданими значеннями восьми критеріїв для п'яти можливих альтернатив визначити множину Парето недомінантних альтернатив.

Альтернативи Критерії
1 2 3 4 5 6 7 8
А 56 73 34 71 29 37 81 17
Б 33 79 45 52 30 41 71 23
В 41 72 33 67 29 36 78 16
Г 36 82 48 55 31 42 74 25
Д 51 73 34 69 27 33 80 15

Одним з найбільш застосовуваних способів розв’язання багатокритеріальних задач є спосіб багатокритеріального вибору, який можна повністю формалізувати, полягає у відмові від виокремлення єдиної "найкращої" альтернативи та дотримуванні угоди про те, що перевагу одній альтернативі перед другою можна віддавати тільки тоді, коли перша за всіма критеріями краща, ніж друга. Якщо ж перевага хоча б за одним критерієм не збігається з перевагою за іншим, то такі альтернативи визнають непорівнянними. У результаті попарного порівняння альтернатив усі гірші за всіма критеріями альтернативи відкидають, а ті, що залишилися, — непорівнянні між собою (недомінантні) — приймають. Якщо всі максимально досяжні значення частинних критеріїв не належать одній і тій самій альтернативі, то прийняті альтернативи утворюють множину Парето, і на цьому вибір закінчується.

Порівняємо альтернативу А попарно з іншими альтернативами:

А і Б: за першим критерієм альтернатива А краща за Б, за другим критерієм альтернатива Б краща за А. Тому альтернативи А і Б визнаємо непорівнянними.

А і В: за 1, 2, 3, 4, 6, 7, 8 критеріями альтернатива А краща за В, за 5 критерієм альтернативи А і В - рівноцінні. Тому альтернативу В відкидаємо.

А і Г: за першим критерієм альтернатива А краща за Г, за другим критерієм альтернатива Г краща за А. Тому альтернативи А і Г визнаємо непорівнянними.

А і Д: за 1, 4, 5, 6, 7, 8 критеріями альтернатива А краща за Д, за 2 і 3 критеріями альтернативи А і Д - рівноцінні. Тому альтернативу Д відкидаємо.

Б і Г: за всіма критеріями альтернатива Г краща за Б, Тому альтернативу Б відкидаємо.

Таким чином, альтернативи А і Г утворюють множину Парето.

Задача 2

За заданим профілем переваг для голосування 21 виборця за чотири альтернативи визначити альтернативу-переможця за правилами:

• відносної більшості;

• Кондорсе;

• де Борда;

• Копленда;

• Сімпсона.

Кількість балів Кількість виборців
2 5 6 8
3 a d d c
2 b a c b
1 c b b a
0 d c a d

Згідно з правилом відносної більшості кожен виборець вибирає лише одну альтернативу. Перемагає та з них, яка набирає найбільшу кількість голосів.

В голосуванні прийняв участь 2+5+6+8 = 21 виборець. Із них 5+6 = 11 виборців віддали перевагу альтернативі d , а 10 іншім альтернативам.

Доля виборців, які віддали перевагу альтернативі d дорівнює:

11/21*100% = 52, 38% > 51%.

Тому, альтернатива d складає відносну більшість.

Згідно з правилом Кондорсе перемагає альтернатива (обов'язково єдина), яка переважає будь-яку іншу за правилом відносної більшості. Недолік цього правила полягає в тому, що можлива така конфігурація переваг, за якої не буде переможця (парадокс Кондорсе). Така ситуація виникає тоді, коли парні порівняння за правилом відносної більшості утворюють цикл.

З 21 виборця 2 віддали перевагу альтернативі a, 8 віддали перевагу альтернативі c, 11 віддали перевагу альтернативі d, альтернативі c не віддав перевагу жоден виборець.

Альтернативі d переважає будь-яку іншу за правилом відносної більшості. Тому, згідно з правилом Кондорсе перемагає альтернатива d.

Згідно з правилом де Борда кожен виборець проголошує свої переваги, ранжуючи n альтернатив від найкращої до найгіршої (байдужість заборонена). Альтернатива має 0 балів за останнє, 1 бал — за передостаннє і так далі, n — 1 бал — за перше місце. Перемагає альтернатива з найбільшою сумою балів.

Альтернативи набрали наступну кількість балів:

a: 3*2+2*5+1*8+0*6 = 24;

b: 3*0+2*10+1*11+0*0 = 33;

c: 3*8+2*6+1*2+0*5 = 38;

d: 3*11+2*8+1*0+0*10 = 49.

За правилом де Борда перемагає альтернатива d (вона має 49 балів, альтернатива а — 24, b – 33; с — 38 балів).