Итак, в четырёхмерном пространстве существуют множества точек, аналогичные координатным плоскостям трёхмерного пространства. Их шесть. Каждое из них состоит из точек, у которых, как и у точек координатных плоскостей трёхмерного пространства, две какие-либо координаты могут принимать любые числовые значения, а остальные две равны нулю. Каждая из этих координатных плоскостей «проходит» через две координатные оси: например, плоскость yz проходит через ось у и ось z. С другой стороны, через каждую ось проходят три координатные плоскости. Так, через ось х проходят плоскости xy, xz, xt. Будем говорить, что ось х является пересечением этих плоскостей. Все шесть координатных плоскостей содержат одну общую точку. Это точка (0, 0, 0, 0) – начало координат.
Получаем аналогичную тому, что имеется в трёхмерном пространстве. Представим схематический рисунок, который поможет создать некоторый наглядный образ расположения координатных плоскостей и осей четырёхмерного пространства.
Рис. 3
На рисунке оси координат изображены прямыми, показаны координатные плоскости, все точно также, как и для трёхмерного пространства.
Однако, в четырёхмерном пространстве есть ещё множества точек, которые можно называть координатными плоскостями. На прямой имеется только начало координат, на плоскости есть и начало координат, и оси в трёхмерном пространстве, кроме начала и осей, появляются ещё и координатные плоскости. Естественно, что в четырёхмерном пространстве появляются новые множества, которые будем называть трёхмерными координатными плоскостями.
Это – множества, состоящие из всех точек, у которых какие-либо три из четырёх координат принимают всевозможные числовые значения, а четвёртая равна нулю.
Таково, например, множество, имеющее вид (х, 0, z, t), где x, z, t принимают всевозможные значения. Это множество будем называть трёхмерной координатной плоскостью xzt. Легко понять, что в четырёхмерном пространстве существует четыре координатные трёхмерные плоскости:
плоскость xyz – множество точек вида (x, y, z, 0),
плоскость xyt - множество точек вида (x, y, 0, t),
плоскость xzt - множество точек вида (x, 0, z, t),
плоскость yzt - множество точек вида (0, y, z, t).
Каждая из трёхмерных координатных плоскостей «проходит» через начало координат и что каждая из этих плоскостей «проходит» через три координатные оси (слово «проходит» мы здесь употребляем в том смысле, что начало координат и каждая из точек осей принадлежат плоскости). Например, трёхмерная плоскость xyt проходит через оси x, y, t.
Аналогично, можно сказать, что каждая из двумерных плоскостей является пересечением двух трёхмерных плоскостей.
Например, плоскость ху является пересечением трёхмерных плоскостей xyz иxyt, т. е. состоит из всех точек, принадлежащих одновременно и тому и другому множеству.
Четырёхмерный куб
Определение сферы и куба
Перейдём теперь к рассмотрению геометрических фигур в четырёхмерном пространстве. Под геометрической фигурой (как и в случае обычной геометрии) будем понимать некоторое множество точек.
Возьмем, например, определение сферы: сфера есть множество точек, удалённых от некоторой точки на одно и то же расстояние.
Это определение уже можно использовать, чтобы по аналогии определить сферу в четырёхмерном пространстве: что такое точка, мы знаем; что такое расстояние между точками, тоже знаем. Мы и примем определение, переведя его на язык чисел (для простоты, как и в случае трёхмерного пространства, возьмём сферу с центром в начале координат).
2-мерный шар (круг) 3-мерный шар
рис. 4
Определение. Множество точек (x, y, z, t), удовлетворяющих соотношению
(5. 1)называется четырёхмерной сферой с центром в начале координат и радиусом R.
Если рассматривать не сферу, а шар, то указанное равенство надо заменить неравенством
(5. 2)Это замечание относится также к двумерному и к трёхмерному случаям.
Расскажем теперь немного о четырёхмерном кубе. Судя по названию, его фигура, аналогичная обыкновенному, хорошо знакомому трёхмерному кубу.
3-мерный куб
Рис. 5
На плоскости тоже есть фигура, аналогичная кубу, - это квадрат.
2-мерный куб (квадрат)
Рис. 6
Кубом называется множество точек (x, y, z), удовлетворяющих соотношениям:
(5. 3)Это «арифметическое» определение куба не нуждается ни в каком чертеже. Однако оно полностью соответствует геометрическому определению куба.
В пространстве есть и другие кубы. Например, множество точек, определяемых соотношениями
тоже является кубом. Этот куб хорошо расположен относительно координатных осей: начало координат является его центром, координатные оси и координатные плоскости – осями и плоскостями симметрии. Однако для наших целей удобен именно куб, определяемый соотношениями (5. 3). Такой куб мы будем иногда называть единичным, чтобы отличить его от других кубов.одномерный куб (отрезок)
рис. 7
Для квадрата тоже можно дать арифметическое определение: квадратом называется множество точек (х, у), удовлетворяющих соотношениям:
Сравнивая эти два определения, легко понять, что квадрат действительно является, как говорят, двумерным аналогом куба. Будем называть иногда квадрат «двумерным кубом».
Можно также рассмотреть аналог этих фигур и в пространстве одного измерения – на прямой. Получим множество точек х прямой, удовлетворяющих соотношениям:
Ясно, что таким «одномерным кубом» является отрезок.
Определение. Четырёхмерным кубом называется множество точек (x, y, z, t), удовлетворяющих соотношениям
Устройство четырёхмерного куба
Рассмотрим по порядку «кубы» различных размерностей, т. е. отрезок, квадрат и обычный куб.
Отрезок, определяемый соотношениями
является очень простой фигурой. Про него можно сказать, что его граница состоит из двух точек: 0 и 1. Остальные точки отрезка будем называть внутренними.Граница квадрата состоит из четырёх точек (вершин) и четырёх отрезков. Таким образом, квадрат имеет на границе элементы двух типов: точки и отрезки. Граница трёхмерного куба содержит элементы трёх типов: вершины – их 8, рёбра (отрезки) – их 12 и границ (квадраты) – их 6.
Запишем эти данные в виде таблицы:
Состав границы Фигура | Точек (вершин) | Отрезок (сторон, рёбер) | Квадратов (граней) |
Отрезок | 2 | - | - |
Квадрат | 4 | 4 | - |
Куб | 8 | 12 | 6 |
Эту таблицу можно переписать короче, если условиться писать вместо названия фигуры число n, равное её размерности: для отрезка n = 1; для квадрата n= 2; для куба n = 3. Вместо названия элемента границы тоже можно писать размерность этого элемента: для грани n = 2, для ребра n = 1.
При этом точку (вершину) удобно считать элементом нулевой размерности (n = 0). Тогда предыдущая таблица примет следующий вид:
размерность границы размерность куба | 0 | 1 | 2 |
1 | 2 | - | - |
2 | 4 | 4 | - |
3 | 8 | 12 | 6 |
4 | 16 | 32 | 24 |
Цель – заполнить четвёртую строку этой таблицы.
Граница отрезка
состоит из двух точек: х = 0 и х =1. Граница квадрата содержит 4 вершины:х = 0, у = 0; х = 0, у = 1; х = 0, у = 1; х = 1, у = 1, т. е. точки (0, 0), (0, 1), (1, 0), (1, 1).
Куб
, , содержит восемь вершин. Каждая из этих вершин есть точка (x, y, z), в которой x, y, zзаменяются либо нулём, либо единицей. Получаем следующие 8 точек: