Смекни!
smekni.com

Многомерная геометрия (стр. 8 из 16)

(7. 2)

Если в том же уравнении (7. 1) придать всем параметрам

только значения
, мы получим k-параллелепипед с вершинами

;

2-параллелепипеды называются параллелограммами.

Условимся называть k-параллелепипед с вершинами А0, А1, А2, …, А12…k параллелепипедом А0А1 А2А12…k.

На рисунке 22 изображён 3-параллелепипед

А0А1 А2А3 А12 А13 А123

и параллелограмм А0А1 А2А12.

а)
б)

Рис. 22

2. Грани параллелепипеда

Придавая в уравнении (7. 1) значения

всем параметрам
при
, а параметру
- значения
или
, мы получим (k- 1)-параллелепипеды, являющиеся гранями k-параллелепипеда. Грани этих (k- 1)-параллелепипедов называются (k- 2)-гранями k-параллелепипеда, грани этих (k–3)-гранями k-параллелепипеда и т. д. Таким образом, k-параллелепипед обладает р – гранями, где р – пробегает значения от 0 до k – 1, 0-грани параллелепипеда совпадают с его вершинами, 1-грани называются рёбрами (при m= 2 - сторонами). На рисунке 22 (а) стороны параллелограмма – четыре отрезка А0А1, А0А2, А0А3, А0А12, А1А13, А2А12, А2А23, А3А13, А12А123, А13А123, А23А123; 2-грани - шесть параллелограммов А0 А1 А1 А12, А0 А1 А3 А13, А0 А2 А3 А23, А1 А12 А13 А123, А2 А12 А23 А123, А3 А13 А23 А123.

Число

р-граней k-параллелепипеда равно
, где
- число сочетаний из kпо р.

3. Объём прямоугольного параллелепипеда

Определим объём прямоугольного k-параллелепипеда, то есть такого k-параллелепипеда, у которого все векторы ра попарно перпендикулярны. Длина любого отрезка прямоугольного k – параллелепипеда называется его измерением.

Объём прямоугольного k-параллелепипеда называется его измерением.

Объём прямоугольного k-параллелепипеда только постоянным множителем отличается от произведения его измерений, т. е. функция

отличается от произведения
измерений прямоугольного параллелепипеда только постоянным множителем
.

В дальнейшем будем считать этот постоянный множитель равным 1, то есть будем считать, что объём Vk прямоугольного k –параллелепипеда равен произведению его измерений.

(7. 4)

4. Объём произвольного параллелепипеда

Сравнивая прямоугольные k-параллелепипед и (k–1)-параллелепипед с объёмами, равному данному k-параллелепипеду и одной из его граней мы получим, что объём Vkk-параллелепипеда равен произведению объёма Vk-1 одной из его (k–1)-граней на расстояние hk между этой гранью и параллельной ей (k–1)-гранью.

(7. 5)

Если назвать выделенную (k–1)-грань k-параллелепипеда его основанием, а расстояние hk его высотой, то формула (7. 5) показывает, что объём k-параллелепипеда равен произведению объёма его основания на высоту.

Объём Vkk-параллелепипеда, определяемого уравнением

, при
, определяется соотношением

,

т. е. квадрат объёма этого параллелепипеда равен определителю Грамма, составленному из k векторов ра.

Утверждение очевидно при k =1, когда параллелепипед совпадает с отрезком, определяемым вектором р1, и объём этого параллелепипеда совпадает с длиной этого отрезка

, т. е.
.

Рассмотрим теперь k-параллелепипед и предположим, что наше утверждение справедливо для его (k – 1)-граней. Рассмотрим его (k – 1)-грань, определяемую уравнением

, при
и
. Тогда скалярный квадрат векторного произведения
в k-плоскости k-параллелепипеда, равный определителю Грамма, составленному из k–1 векторов
(а < k), равен объёму этой (k – 1)-грани. Так как объём Vkk-параллелепипеда равен произведению объёма Vk-1 этой (k–1)-грани на соответствующую высоту hk , то объём Vk равен

, (7. 7)

где j - угол между вектором рk и перпендикуляром к (k–1)-грани в k-плоскости k-параллелепипеда.

5. Аффинность k-параллелепипедов

Если даны два произвольных k-параллелепипеда А0 А1… Аk… А12…k и

В0 В1… Вk… В12…k, то системы точек А0, А1, … ,Аk и В0, В1, … ,Вk определяют аффинное преобразование, переводящее первые из этих точек во вторые. Так как при аффинном преобразовании плоскости переходят в плоскости, а параллельные плоскости в параллельные плоскости, это аффинное преобразование переводит весь k-параллелепипед А0 А1… Аk… А12…k в k-параллелепипед В0 В1… Вk… В12…k. Поэтому всякие два k-параллелепипеда аффинны.

Относительный объём k-параллелепипеда, определяемого уравнением

и
, при аффинном преобразовании относительные величины преобразуются по формуле, то есть умножается на определитель матрицы этого аффинного преобразования, если k-параллелепипед с объёмом Vk переходит при аффинном преобразовании с матрицей
в k-параллелепипед с объёмом
, то

(7. 8)

Отсюда вытекает, что отношения относительных объёмов k-параллелепипедов не изменяются при аффинных преобразованиях.

Выпуклые многогранники

В этом пункте будем рассматривать действительное k-мерное аффинное пространство

, считая, что в нем дана аффинная система координат.

Пусть через некоторую точку

имеющую координаты
, проведена прямая в направлении вектора
,
координаты которого обозначим
. Согласно изложенному ранее эту прямую можно задать параметрическими уравнениями

,
. (7.9)