Таким образом, по мере продвижения по тренду T0 от клетки к клетке слева направо геометрическая мерность пространства увеличивается на единицу путем умножения предыдущей мерности на L+1: Ln+1T0=LnT0 ·L+1. Можно утверждать, что размерности свойств всех элементов тренда имеют в своем составе множитель L+1, который передается по наследству от свойства к свойству, и который может быть назван геном длины. Ген длины передает всем элементам (поколениям) тренда физическое свойство: быть совокупностью (ансамблем) линий. Действительно, линия - это совокупность линий(из одной линии), поверхность - это совокупность линий, объем - это тоже совокупность линий и т.д.
Но тренд T0 в таблице неограничен как слева, так и справа, и может начинаться с любой клетки. Если он начинается с безразмерной величины L0T0, тогда все последующие поколения будут обладать свойством "быть совокупностью точек".
Выясним, как же физически или геометрически передается наследственное свойство.
Представим наше изделие, т.е. ампулу, стоящую вертикально (в деревянной кассете) и характеризуемую свойством высоты, измеряемым единицами длины. Допустим, что в начале никакого изделия и, тем более, его свойства высоты, нет. Тогда наша ампула вырождается в безразмерную точку, расположенную, например, на дне кассеты. Это будет начало отсчета. Возьмем другую точку, например, бусинку (нулевого радиуса) или пятнышко, кружок нулевой толщины (строго говоря, dl) и нулевого радиуса, и наложим его (или ee - бусинку) на первую точку, затем положим третью точку и т.д. Можно даже эти точки-кружки-бусинки накалывать на вертикальную ось как на спицу.
Наконец, накололи на спицу столько точек, что добрались до верхней точки ампулы. Получили прямую вертикальную линию нулевой толщины, но определенной длины. Именно эта линия и обладает абстрактным свойством высоты. Можно также сказать, что линия есть некоторое распределение точек вдоль высоты ампулы, и записать логическую формулу: линия = "И" точка "И" точка "И" точка...."И" точка... Формула эта выражает математическую операцию логического умножения "И"-"И" или соединения, сложения элементов в некоторую совокупность.
Вот где в первый раз проявился метод "И"-"И" Бартини - в геометрии. Недаром статья [7], где также напечатана LT-таблица, называется "Множественность геометрий и множественность физик".
Важно отметить, что свойство линии - ее высота, выражаемая в единицах длины, появляется уже при двух точках, расположенных в любых местах этой линии, например, в начале отсчета и на конце капилляра. Тогда минимальная логическая формула для линии будет такая: линия = "И" точка "И" точка.
Аналогично поступаем дальше и определяем свойство инструмента y, которое определено как поверхность пламени, контактирующая с ампулой. Так как свойство линии, измеряемое длиной, уже выяснено, то берем эту самую линию и сворачиваем ее в кольцо вполне определенного диаметра, равного диаметру ампулы и пропорционального длине с некоторым безразмерным коэффициентом. Толщину кольца выбираем, естественно, нулевой (строго, dl) - вот оно, наследственное свойство точки!
Далее такие кольца начинаем накалывать на нашу спицу, формируя из них, поверхность контакта. В районе капилляра кольца, конечно, должны быть существенно меньшего радиуса.
Ясно, что поверхность (совокупность колец) или свойство инструмента есть определенное распределение линий вдоль (ген L+1 !) высоты ампулы. Минимальная логическая формула поверхности: S = "И" линия "И" линия.
Теперь будем формировать объем или свойство y икс-элемента путем наращивания на dl того измерения, которое на предыдущей итерации было нулевым. Нулевой толщиной стенок обладает цилиндрическая поверхность, образующая из колец поверхность контакта или оперативную зону в терминологии АРИЗ. Наращиваем толщину стенок поверхности, появляется распухающий цилиндр, который и образует объем - свойство икс-элемента. В данном случае объем является определенным распределением поверхностей вдоль другого направления, перпендикулярного высоте. Иначе и объем не образовать. Но, с другой стороны, объем распределен определенным образом и по высоте ампулы: в районе лекарства - это толстый цилиндр, в районе капилляра - тонкий, да еще есть переход от толстого к тонкому. Минимальная логика объема: V = "И" поверхность "И" поверхность.
Наконец, последняя итерация - образование геометрического образа решения. Мысленно берем кубики объема (или то объемное, за что можно ухватить), и начинаем накалывать на вертикальную спицу. Получаем, что решение в пространстве, есть, по крайней мере, определенное распределение объема по высоте ампулы, т.е. по изделию. Мы-то не знаем пока, что этот объем должна занимать вода, но геометрия подсказывает, что "вода" по высоте ампулы может быть распределена по-разному. Например, снизу много - "толстый" объем, сверху мало - "тонкий" объем. Получается то же самое, когда две точки уже дают линию, а две линии -поверхность, так и два объема ("И" толстый, "И" тонкий или "И" длинный, "И" короткий (в пределе - нулевой длины)), размещенные вдоль изделия, дают минимальный геометрический образ решения.
Пространственный анализ задачи по таблице Бартини в некотором смысле аналогичен шагу 2.1 АРИЗа. Там тоже определяются ресурсы пространства, в котором находится конфликт, и куда надо вводить икс-элемент.
В чем отличие? В АРИЗе икс-элемент надо помещать в оперативную зону, т.е. в данном решении - на поверхность ампулы. Не сразу доходит до сознания, что это может быть вода: как же она удержится на поверхности? Конечно, потом дойдет (да если еще и преподаватель пояснит!), что если наливать воду, и она будет скатываться вниз по ампуле, то необходимо ампулу поставить в какой-то объем, чтобы вода не утекала. Здесь же, по Бартини, получается сразу, что икс-элемент должен иметь объем.
Еще ценной информацией является установление места размещения икс-элемента в геометрии задачи. Действительно, сначала идет изделие со своей спицей-высотой, потом, как граница разделения, инструмент со своей поверхностью, затем, по другую сторону границы, икс-элемент в своем объеме.
Мы не знаем, как Бартини называл строки своей таблицы, в частности, строку T0 . Поэтому введем свою терминологию, назовем эту строку трендом пространственных ресурсов (или пространственным трендом), да и все остальные строки тоже. Они одинаковы в том смысле, что размерность каждой последующей клетки тренда получается умножением размерности предыдущей клетки на ген длины L+1 .
Например, рассмотрим фрагмент пространственного тренда LnT-4: L-2T-4, L-3T-4, L-4T-4 или "давление - поверхностное натяжение - сила". Если L-2T-4 есть давление в точке, то L-3T-4 есть распределение давления по длине, а сила L-4T-4 есть распределение давления по поверхности.
Естественно, столбцы таблицы будем называть трендами временных ресурсов или просто временными трендами. Они одинаковы в том смысле, что размерность каждой последующей клетки тренда получается умножением размерности предыдущей клетки на ген времени T+1, если продвигаться сверху вниз, или умножением на T -1, если продвигаться снизу вверх. Аналогичны связям на пространственных трендах и интегральные или дифференциальные связи между элементами временных трендов. Например, на временном тренде L+1T m клетка с размерностью L+1T-2 является линейным ускорением, следующая клетка L+1T-1 является интегралом от линейного ускорения, т.е. линейной скоростью, следующая клетка L+1T0 является интегралом от линейной скорости, т.е. длиной и т.д.
Анализ на временном тренде ничем не отличается от анализа на тренде пространственных ресурсов, только дифференциал длины dl заменяется на дифференциал времени dt. Правда, появляются такие непривычные термины как поверхность времени L0T2 или объем времени L0T3, но мы здесь разбирать их не будем, поскольку это не повлияет на дальнейшее расследование метода Бартини. Желающие познакомиться с этим вопросом подробнее, могут обратиться к литературе [14], где в приложении есть время даже в пятой степени.
По аналогии с АРИЗом, в котором кроме оперативных пространства (зоны) и времени, анализируются также и вещественно-полевые ресурсы, определим тренды вещественно-полевых ресурсов как диагонали таблицы, проходящие слева снизу направо вверх (тренды ВПР).
Тренды ВПР (см.рис.) образуют 7 диагоналей, содержащих физические свойства с размерностями LmTn, при |m+n|3 реализуемые в трехмерном пространстве. Легко заметить, что все тренды ВПР от поколения к поколению передают ген скорости V=L1T-1. В этом - их общность. Однако есть и различие между трендами, а именно, в сумме Sn+m = n+m показателей степени n и m для размерностей LnTm.
Желтый тренд имеет сумму Sn+m =0 и передает по наследству вдоль тренда ген LnT-n. Серые тренды имеют сумму Sn+m =±1 и передают гены LnT-n±1. Голубые тренды имеют сумму Sn+m =±2 и гены LnT-n±2 . Наконец, зеленые тренды имеют сумму Sn+m =±3 и передают гены LnT-n±3.
Возникает вопрос, как же пользоваться всеми этими трендами, как найти вещественно-полевой ресурс или свойство икс-элемента?
В задаче о запайке ампул мы нашли только пространственный образ икс-элемента, т.е. одну координату - по оси L, равную L3. Значит, мы находимся в клетке L3T0 и ни вправо, и ни влево уходить с нее не можем. Иначе получим L в другой степени. Поэтому необходимо либо передвигаться по временному тренду L3Tm вверх или вниз до нужной клетки, либо остаться в исходной клетке L3T0, считая что объем есть не только пространственный ресурс, но и вещественно-полевой.
Проницательный читатель, конечно, давно догадался, что нам делать. Но мы, увы, не так проницательны, поэтому поступим по-научному. Найдем вторую координату. Ведь пока мы использовали только один фактор, одно свойство, определяющее хорошую запайку, а именно, длину оплавленного капилляра. Поэтому одну координату и получили. А второй фактор - температуру, от которой портится лекарство, пока не использовали. Давайте это и сделаем.