Смекни!
smekni.com

Технология теории решения изобретательных задач (ТРИЗ) (стр. 6 из 7)

Баланс по третьей строке матрицы также может быть сведен к первым двум случаям, либо третья скорость будет учитывать какую-то более "тонкую" структуру, например, скорость движения на молекулярном уровне в реакции горения. Здесь уже требуются для консультации физики и химики.

Для отрицательных значений k, которые связаны с появлением температуры среди операндов логической формулы баланса ВПР, можно предполагать, что гены скорости определяют процессы оплавления стекла, движения молекул жидкого лекарства, химические реакции порчи лекарства и т.п.

В принципе, от отрицательных значений k можно уйти, поскольку при k <0 выходим на понятия длительности расстояния, поверхности времени т.п. Чтобы в это дело пока не вникать, а все-таки понять, от каких входных факторов зависит конечный результат, можно логическую формулу баланса ВПР домножить на ген скорости в какой-то положительной степени.

Например, возьмем четвертую строку матрицы баланса и домножим в ее логической формуле левую правую части на V-3. Тогда получим

Времятемпературалинейная скорость = распределение температуры по длине,


т.е. результат (выход) будет оцениваться не по объемному расходу L3T-1 , а по другому фактору родительского тренда - L6T-4.

Осталось только показать, как получается k=0. Очень просто, и следует из формулы

расход нагретого газа V 0 =расход холодной воды.

Баланс ресурсов показывает, что Бартини работал с нескольким входными факторами, а не с двумя, как АРИЗ. Именно в этом заключается важное

Отличие метода Бартини от АРИЗ

Решение Бартини, можно сказать, более геометрично и физично. В той же задаче о запайке ампул пока еще не найденная вода, а всего лишь тепло/хладоноситель, уже получается расходуемой и распределенной по высоте, что соответствует физике и геометрии процесса, а Альтшуллер и Селюцкий сначала находят, что это вода, - на противопоставлении огню при тушении пожаров (а это, скорее, психология подпускается), а потом говорят, что воду можно (а разве она не испаряется?) сделать проточной.

Хорошее определение геометрических, временных и физических свойств икс-элемента является компенсацией за то, что не называется сам икс-элемент. По Бартини мы должны опознать его по найденным свойствам.

Если проводить аналогии между методом Бартини и ТРИЗ, то наиболее похожей на LT-таблицу Бартини является, уже упоминавшаяся выше, таблица выбора приемов устранения ТП. Генеалогию этой таблицы в серии статей подробно разобрал Л. Шуб и раскритиковал таблицу ТП еще более резко, чем Б.А.Лабковский.

Вот что пишет Л. Шуб в [15, ч.4]: "В типовых приемах недостатка больше не было (списки постоянно уточнялись). А вот вплотную подойти к выделению "типовых противоречий" до сих пор не удавалось. И главное, неясной оставалась будущая логическая связка, позволяющая безошибочно находить для каждого "типового противоречия" свой - типовой же - прием".

Бартини в своей LT-таблице нашел эту связку: на уровне физических размерностей противоречивых свойств и икс-элемента. Статья Бартини опубликована в 1965 г. Примерно в это же время, по свидетельству Л.Шуба, оформилась и таблица Альтшуллера. Эти две таблицы схожи своей, так сказать, физикой. Действительно, в обеих таблицах встречаются одинаковые физические понятия: длина, скорость, время, сила, давление, вес и т.п. Если в физике какое-либо свойство не измеряется, то его можно оценить косвенно. Например, форма может быть оценена аэродинамическим сопротивлением.

Из физики Бартини пошел в математику, в формулы размерности, и на 20-30 лет раньше, чем Альтшуллер. Альтшуллер же пошел в психологию, в стереотипы поведения, сложившиеся в глубокой древности при обращении человека с палкой, камнем, водой, огнем, простейшими орудиями труда. Древний человек не только пробы и ошибки совершал, он еще и обучался, опыта и стереотипов поведения набирался и детишкам передавал: "бьют - беги, дают - бери", опять же матрешку придумал! И это древнее, чем математика, для математики нужен достаточно высокий уровень абстрактности.

Альтшуллер был писателем-фантастом, ему были ближе психологические подходы. А Бартини все-таки был инженер-конструктор, его математика была на голову выше, чем математика Альтшуллера. Каждый работал своим методом. И если у Альтшуллера с таблицей ТП получилось, как пишет Л.Шуб, неудачное исполнение, то задумка-то была очень даже неплохой: здесь можно поработать, начиная со стереотипа конфронтации типа ФП "свой-чужой" или "плюс-минус" и переходя далее к другим стереотипам бинарных отношений. А пока у нас есть еще

Пара тестовых задачкоторые все знают, и которые в ТРИЗ у всех на слуху. Разберем их очень коротко, в стиле Бартини. Естественно, это перевозка шлака и молниеотводы, тривиальнее не выбрать. Между прочим, Б.А.Лабковский тоже рассматривает решения этих задач.

Вот цитата из его книги "Наука изобретать"[9, с.336]: " ...рассмотрим известное изобретение о вывозе горячего шлака. Мы помним, что высвободить ковш от горячего шлака эффективнее всего при выполнении двух условий. Во-первых, образовавшаяся корка должна быть как можно более тонкой. Во-вторых, она должна быть как можно менее прочной. Таким образом, двум следствиям соответствует одна причина. Решение (если оно возможно) проще всего отыскивается в таблице фиксированием двух следствий в одном столбце. В нашем примере следствия σв и q находятся в одном столбце со входом θ, определяющим плотность. Таким образом, мы сразу приходим к задаче увеличения пористости застывающей корки".

Здесь имеется в виду, что σв - предел прочности, а q, хотя и не определено, но можно догадаться, что это толщина корки, θ - плотность. Под таблицей понимается "Таблица физических эффектов", которую сам же автор [9] критикует за неудобство пользования из-за большой размерности.

Попробуем решить задачу по методу Бартини. Предел прочности в системе СИ измеряется в [МПа], т.е. в единицах давления. По LT-таблице находим размерность давления и умножаем на размерность толщины корки, т.е. длину, и получаем

L2T-4 · L1T0 = L3T-4 , Sn+m =3-4=-1.

Попадаем на верхний серый тренд ВПР в клетку L3T-4 . Но при движении по этому тренду никак не попасть на размерность массовой плотности L0T-2, которая находится на верхнем голубом тренде ВПР с суммой Sn+m =-2.

Что-то не получается. Давайте разберемся. А для этого посмотрим, как формулирует макро-ФП для этой задачи Г.С. Альтшуллер [16, с.147]: "Слой воздуха в ОЗ должен быть заполнен нетеплопроводным веществом, чтобы уменьшить охлаждение шлака, и не должен быть заполнен веществом, чтобы не мешать заливу и сливу шлака".

Каковы главные факторы, определяющие противоречие, и которые имеют физическую размерность? Ясно, что это теплопроводность и опять-таки толщина корки, так как отсутствие вещества в слое ОЗ означает корку нулевой толщины, а толщина опять-таки измеряется единицами длины.

Теплопроводность в системе СИ измеряется в [Вт/м·K] или, при переводе мощности и температуры в LT-базис, в L-1T-1. Находим родительский тренд

L-1T-1 · L1T0 = L0T-1 , Sn+m =0-1=-1.

Решение по Бартини с выбранными нами исходными данными из модели Альтшуллера, так и из модели Лабковского, дает один и тот же родительский тренд ВПР. Поэтому на нем и будем искать ответ, не так уж много элементов в этом тренде в нашей LT-таблице, всего-то 5 штук. Естественно, самое подходящее свойство - поверхностное натяжение с размерностью L-3T-4, определяющее капиллярно-пористую структуру, а именно, пену. И у Альтшуллера решением является пена. Если же использовать плотность L0T-2, то ее надо было бы рассматривать как входной фактор задачи (обеспечение нужной плотности корки), т.е. выше мы сделали ошибку, рассматривая плотность как выход. Второй входной фактор, естественно, - корка нужной толщины. Тогда снова выйдем на поверхностное натяжение

L0T-2 · L1T0 = L1T-2 , Sn+m =1-2=-1.

Задача о молниеотводе в формулировке [17, 9]: "Для защиты антенны радиотелескопа, спрятанного внутри пластмассового купола, нужно расставить внутри молниеотводы. Но молниеотводы - проводники, а проводники задерживают радиоволны, создают радиотень". Ответом задачи является изготовление молниеотвода из диэлектрической трубы с пониженным давлением.

Определим основные факторы, влияющие на работу молниеотвода-прототипа. Это электрическая прочность воздуха и проводимость металлического штыря, концом зарытого в землю. В системе СИ электрическая прочность измеряется в [В/м]. В вольтах измеряется разность потенциалов, которая по таблице Бартини имеет размерность L2T-2, тогда электрическая прочность будет иметь размерность L1T-2. Проводимость в базисе LT Бартини имеет размерность L-1T1 (строго говоря, такой размерности в системе СИ соответствует ом [Ом], т.е. единица электрического сопротивления, но Бартини эту клетку назвал проводимостью, поэтому будем придерживаться его терминологии). Умножаем размерность электрической прочности на проводимость

L1T-2 · L-1T1 = L0T-1 , Sn+m =0-1=-1.

Выходим на верхний серый тренд ВПР с Sn+m =-1. Размерность давления L2T-4, давление находится на верхнем голубом тренде с Sn+m =-2. Тренды не совпадают. Какой вывод? Не учтен еще какой-то основной фактор. Какой? Попробуем его найти. Для этого нужно с серого тренда перейти на голубой, т.е. уменьшить сумму Sn+m =-1 на единицу. Сделаем это следующим образом: домножим полученный результат L0T-1 на L0T-1, тогда переходим в клетку L0T-2 на голубом тренде ВПР. По размерности L0T-1 находим в LT-таблице неучтенный фактор - это частота, конечно, электромагнитного излучения радиотелескопа.

Вот почти и все. Осталось

Несколько слов о том, почему Бартини не опубликовал свой метод