Смекни!
smekni.com

Моделирование геометрического паркета из пятиугольников и шестиугольников (стр. 2 из 3)

§ 2. Моделирование паркета из пятиугольников

Задача. Написать математическую модель для составления программы изображения паркета на экране компьютера, используя шестиугольник, изображенный на рис. 1.

Для пятиугольника, изображенного на рис. 1, выполняются следующие условия:


1)

, (1)

2)

, (2)

3)

. (3)


В классификации М. Гарднера [3, c.184], [1 , c. 196] и Марджори Райс [3, c.189] этому пятиугольнику присвоен тип № 2.

Условия (2) и (3) не являются независимыми. Вычисляя сумму углов пятиугольника по формуле

, получаем 5400, поэтому достаточно потребовать выполнение одного из условий (2), (3), тогда второе выполняется автоматически. Итак, уменьшая число параметров
для пятиугольника на 2 на основании равенств (1), (3), получаем пять параметров для задания пятиугольника. Это (рис. 2.)

1) длины сторон: a=AE, b=ED, c=CB,

2) углы:

.

Для декартовой системы координат, изображенной на рисунке 2, получаем координаты вершин и векторов:

.

Для задания вектора

введем вспомогательный угол
, образованный этим вектором с положительным направлением оси Ох

Для углов в точке D с учетом их ориентации имеем

или

Для задания вектора

введем вспомогательный угол
, образованный этим вектором с положительным направлением оси
.

Для углов в точке С имеем

,

.

,

На вводимые параметры наложим естественные условия:

(4)

Но при построении пятиугольника с этими условиями могут возникнуть следующие конфигурации, приводящие к невыпуклым пятиугольникам:

а) После последовательного построения отрезков ЕА, ED, DC для пятиугольника точки Е и С оказались расположенными по одну стороны относительно прямой AD (рис. 2, рис. 3), но в выпуклом многоугольнике точки Е и С должны располагаться по разные стороны относительно диагонали AD.


Две точки

расположены по одну сторону относительно прямой, заданной уравнением
, тогда и только тогда, когда выполняется условие

. (5)

Составим уравнение прямой AD

.

(6)

Неравенство (5) для точек

и прямой (6) принимает вид

После упрощения получаем неравенство

(7)

Итак, если после введения параметров выполняется неравенство (7), то программа должна предусмотреть возврат на уточнение параметров, чтобы избежать конфигурации, рассмотренной в случае а).

Рассмотрим второй способ нахождения аналитической характеристики случая а).

Найдем величины

,

Функция

на отрезке
является монотонно убывающей функцией, поэтому из условия
следует условие
и наоборот.

Если для введенных параметров выполняется условие

, (8)

то следует повторить ввод параметров для пятиугольника.

б) При построении отрезка СВ снова может возникнуть конфигурация, приводящая к невыпуклому пятиугольнику.


Составим уравнение прямой АВ

.

Неравенство (4) для точек

и прямой АС после упрощений принимает вид

(9)

Если для введенных параметров выполняется условие (9), то следует повторить ввод параметров для пятиугольника.

с) При построении отрезка СВ снова может возникнуть конфигурация, приводящая к невыпуклому пятиугольнику.



Чтобы избежать данной конфигурации необходимо потребовать, чтобы ордината точки В была меньше ординаты точки Е, то есть чтобы выполнялось следующее неравенство:

(10)

Если для введенных параметров выполняется условие (10), то следует повторить ввод параметров для пятиугольника.

Координаты всех вершин пятиугольника определены, и пятиугольник можно построить на экране компьютера.

По условию:

, следовательно, этими углами можно замостить окрестность точки.

Таким образом, для составления программы изображения паркета из данного пятиугольника на экране компьютера, достаточно рассмотреть три пятиугольникa: ABCDE, A2B2C2D2E2 и A3B3C3D3E3 (рис. 6).

D2
Рис.6

Рассмотрим математическую модель для составления программы изображения паркета на экране компьютера.

Координаты вершин пятиугольникaABCDE :