Если мы будем рассматривать зависимость от времени t у функций
и как , то мы получаем уравнения Гельмгольца:Произвольную плоскую волну можно разложить в спектр, то есть можно ее представить в виде суперпозиции плоских же гармонических волн. Поэтому имеет смысл изучать распространение гармонических волн. Зависимость от координат x,y в декартовой системе координат и времени t мы будем брать в виде экспоненты. Этот же результат можно получить, если применить к уравнениям Гельмгольца для потенциалов, записанным в декартовой системе координат, метод разделения переменных.
1.2 Граничные условия
Рассмотрим граничные условия на границе раздела сред при распространении упругой волны. Они заключаются в непрерывности компонент вектора смещения
и непрерывности нормального и касательных , компонент тензора напряжений при переходе через границу раздела сред.В изотропной среде компоненты тензора напряжений
связаны с компонентами тензора деформаций при помощи закона Гука (1.6), а компоненты тензора деформаций связаны с компонентами вектора смещений с помощью формулы (1.3). Рассмотрим цилиндрическую границу в цилиндрической системе координат. Если систему прямоугольных координат выбрать таким образом, что ось z является осью цилиндра, то компоненты тензора напряжений выразятся через компоненты вектора смещения по формулам:где
- нормальная компонента тензора напряжений, - касательные компоненты, и - упругие константы Ламе.2. РАССЕЯНИЕ ПЛОСКОЙ ПРОДОЛЬНОЙ УПРУГОЙ ВОЛНЫ ОДНОРОДНЫМ ИЗОТРОПНЫМ ЦИЛИНДРИЧЕСКИМ СЛОЕМ
2.1 Постановка задачи
Рассмотрим бесконечный изотропный полый круговой цилиндр с внешним радиусом
и внутренним - , модули упругости и плотность материала которого . Цилиндрическая система координат выбрана таким образом, что координатная ось z является осью вращения цилиндра. Будем считать, что окружающее и находящееся в полости упругие среды являются изотропными и однородными, имеющими плотности и модули упругости , соответственно.Пусть из полупространства
на упругий цилиндрический слой параллельно оси Ох в плоскости Оxy падает плоская упругая монохроматическая волна:Определим отраженную от слоя и прошедшую через слой волны, а также найдем поле смещений внутри упругого слоя.
Фронт падающей волны перпендикулярен образующим цилиндра и поэтому задача является плоской, то есть смещения не зависят от координаты z.
Учтем, что в формуле
, представляющей собой общее выражение для смещения, потенциал в силу выбранной системы координат мы выбрали так, чтобы единственной отличной от нуля была компонента . Поэтому в силу линейности задачи мы можем рассматривать отдельно падение продольной волны , сдвиговой волны , где .Мы осстановимся на рассмотрении рассеяния плоской продольной волны, представленной вектором падения:
.2.2 Рассеяние продольной волны
Пусть из внешнего пространства на упругий цилиндр перпендикулярно падает плоская упругая продольная волна, потенциал смещений которой равен:
,где
- волновой вектор, - радиус-вектор, - круговая частота. В дальнейшем временную зависимость для простоты формул опускаем. В цилиндрической системе координат падающая волна может быть представлена в виде: , (2.1)где
- волновое число равное модулю вектора , , - цилиндрическая функция Бесселя порядка n.Определим отраженную от цилиндра и возбужденную в полости волны, а также найдем потенциалы смещений внутри слоя.
Вектор смещения в однородных изотропных средах также будет иметь всего две отличные от нуля компоненты:
Отраженная, возбужденная упругие волны, а также волны внутри однородного слоя являются решениями уравнений Гельмгольца. Причем их потенциалы также удовлетворяют уравнениям Гельмгольца и не зависят от координаты z. Следует иметь в виду, что вектор-функция
будет иметь лишь одну отличную от нуля компоненту , то есть .Отраженная волна должна удовлетворять условиям излучения на бесконечности:
, (2.2)а прошедшая волна – условию ограниченности. Поэтому потенциалы смещений этих волн будем искать в виде:
- для отраженной волны:
, (2.3)- для возбужденной волны:
, (2.4)- для волны внутри слоя:
(2.5)где
, , , , , - волновые числа.Заметим, что представления (2.3) - (2.5) можно получить, применив метод разделения переменных к уравнениям Гельмгольца для потенциалов в цилиндрической системе координат от двух переменных. Мы получим функции вида:
.Для того, чтобы потенциал отраженной волны удовлетворял условию излучения на бесконечности, необходимо в качестве цилиндрической функции Бесселя
выбрать цилиндрическую функцию Ханкеля первого рода , в этом случае потенциалу соответствует расходящейся волне с учетом того, что временной множитель выбран в виде . Для того, чтобы потенциал прошедшей волны удовлетворял условию ограниченности, необходимо в качестве цилиндрической функции Бесселя выбрать цилиндрическую функцию Бесселя первого рода . - цилиндрическая функция Неймана.