Смекни!
smekni.com

Моделирование рассеяния плоской упругой продольной волны на упругом однородном изотропном цилиндрическом слое (стр. 3 из 4)

Коэффициенты подлежат определению из граничных условий, которые заключаются в непрерывности смещений и напряжений на обеих поверхностях упругого слоя. Имеем:

при

:
,
,
,
;

при

:
,
,
,
; (2.6)

где

- компоненты вектора смещения частиц,
- компоненты тензора напряжений в средах
(j=1) ,
(j=2),
(j=3) соответственно.

Компоненты вектора смещения

связаны с потенциалами смещений следующим образом:

(2.7)

Подставим (2.7)в (1.10), получим:

С учетом того, что дифференцирование по

- это умножение на
, перепишем наши формулы:

и

Подставим полученные выражения в граничные условия (2.6). В результате получим систему линейных алгебраических уравнений для коэффициентов

:

Разрешая для каждого n полученную систему одним из численных методов и подставляя полученные коэффициенты в потенциалы, найдем волновое поле, в том числе и в бесконечности.

Проведя вычисления для достаточно большого числа n, получаем возможность анализировать волновые поля вне и внутри оболочки по разложениям (2.2), (2.4), (2.5). В частности можно оценить поведение рассеянного поля в дальней зоне. Пользуясь асимптотическим представлением функций Ханкеля при больших значениях аргумента, для потенциала рассеянной продольной волны при

получим:

или

Опуская первый множитель, характеризующий распространение ненаправленной цилиндрической волны, и учитывая, что амплитуда падающей волны – единичная, получим выражение для нормированной амплитуды рассеянной волны:

(2.8)

Это выражение определяет диаграмму направленности рассеянного поля по амплитуде.


3. ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ И АНАЛИЗ РЕЗУЛЬТАТОВ

3.1 Расчетные данные

Расчет будем проводить с материалами, модули упругости и плотность которых представлены в следующей таблице:

Таблица 1. Модули упругости и плотность материалов.

Материал И его тип
Изотропный (алюминий) 5.3 2.6 2.7
Изотропный (сталь) 11.2 8.1 7.7

Мы будем рассматривать алюминиевый цилиндрический слой, помещенный в упругое однородное изотропное пространство (сталь). Необходимые данные будут взяты из таблицы 1. Расчеты будем проводить при значениях радиусов:

,
, и при следующих частотах:
=2.0,
=3.0,
= 4.0 (соответственно при количестве членов в ряде N=7.0, N=9.0, N=11.0).

3.2 Численная реализация

Алгоритм численного расчета реализован в виде программы kurs_ira.cpp на IBM – совместимых компьютерах на языке C++ в среде Borland версии 3.1. В качестве метода решения системы линейных алгебраических уравнений применялся метод Гаусса с выбором главного элемента. Листинг программы представлен в ПРИЛОЖЕНИИ 1. В качестве начальных данных в программе задаются плотности и модули упругости для различных сред, значения радиусов, номер задачи. В качестве результатов были получены диаграммы направленности рассеянного поля по амплитуде, представленные в ПРИЛОЖЕНИИ 2.


ЗАКЛЮЧЕНИЕ

В результате проделанной работы проделано следующее:

1. Приведены волновые уравнения в изотропных однородных средах.

2. Для однородной изотропной среды теоретически было показано разделение волны на продольную и поперечную части и приведены формулы для граничных условий.

3. Поставлена и решена задача о прохождении плоской упругой продольной волны через упругий однородный изотропный цилиндрический слой и приведены диаграммы направленности рассеяния продольной волны по амплитуде. Листинг программы представлен в ПРИЛОЖЕНИИ 1. Расчетные данные взяты из таблицы 1.

4. В качестве численного метода решения системы линейных алгебраических уравнений использован метод Гаусса с выбором главного элемента.

5. В качестве результатов были получены графики диаграмм рассеянного поля продольной волны по амплитуде в ПРИЛОЖЕНИИ 2.

Эти результаты могут широко использоваться как в самой теории упругости, так и в ее приложениях в области дефектоскопии, геофизики, методах идентификации материалов.


ЛИТЕРАТУРА

1. Амензаде Ю.А. Теория упругости.- М.: Высшая школа, 1976, 272с.

2. Бреховских Л.М. Волны в слоистых средах.-М.: Изд-во АН СССР, 1957, 520c.

3. Гузь А.Н., Головчан В.Т. Дифракция упругих волн в многосвязных телах. – Киев, Наукова думка, 1972, 256с.

4. Исраилов М.Ш. Динамическая теория упругости и дифракции волн - М.: Изд-во МГУ, 1922, 205c.

5. Ландау Л.Д., Лившиц Е.М. Теория упругости.- М.: Наука, 1987, 248c.

6. Лехницкий С.Г. Теория упругости анизотропного тела.– М.:Наука,1977, 415с.

7. Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. - М.: Наука, 1966, 707с.

8. Новацкий В. Теория упругости. – М.: Мир, 1975. 872с.

9. Поручиков В.Б. Методы динамической теории упругости. – М.: Наука, 1986, 328c.

10. Рамская Е.И. Анализ собственных частот и форм осесимметричных колебаний трансверсально-изотропной полой сферы. // Прикладная механика, 1983, т. 19, N 7, c.103-107.

11. Скобельцын С.А., Толоконников Л.А. Прохождение звуковых волн через трансверсально–изотропный неоднородный плоский слой. // Акуст. журн., 1990, т.36, N4, с. 740-744.

12. Толоконников Л.А. Прохождение звука через неоднородный анизотропный слой, граничащий с вязкими жидкостями. // Прикладная математика и механика, 1998, т. 62, N 6, с. 1029-1035.

13. Шендеров Е.Л. Импедансы колебаний трансверсально-изотропного сферического слоя.// Акуст. журн., 1985, т. 31, N 5, с. 644-649.

14. Шендеров Е.Л. Шоренко И.Н. Импедансы колебаний изотропной и трансверсально-изотропной сферических оболочек, вычисленные по различным теориям.// Акуст. журн., 1986, т. 32, N 1, с. 101-106.

15. Шульга Н.А. Распространение осесимметричных упругих волн в ортотропном полом цилиндре.// Прикладная механика,1974,т.10,N9,c.14-18.

16. Шульга Н.А. Собственные колебания трансверсально-изотропной полой сферы.// Прикладная механика, 1980, т.16, N 12, c.108-110.


ПРИЛОЖЕНИЕ 1. ЛИСТИНГ ПРОГРАММЫ

#include<stdio.h>

#include<conio.h>

#include<complex.h>

#include<stdlib.h>

#include<graphics.h>

#define K 7

#define M 50

#define N 16

#define MM 8

complex iii=complex(0.0,1.0);

double w;

complex const_w;

double r1,r2,h=0.5,L1,L2,L3,M1,M2,M3,R1,R2,R3;

int zad;

double eps=0.000001;

double C=0.577215664901532;