Пусть х' и х" - произвольные точки отрезка [a; b], причем х' < х". Легко проверить, что при любом aÎ [0; 1] точка xa = ax’ + (1-a) x" лежит на отрезке [x’; х"] и при непрерывном изменении a от 0 до 1 пробегает этот отрезок от точки х" (при a = 0) до точки x' (при a = 1).
Рассмотрим хорду графика f (x), проходящую через точки (х',f (х')) и (х",f (х")). Ордината ya точки этой хорды, соответствующая абсциссе c, равна. Поэтому неравенство (1) графика выпуклой функции и хорды означает, что f (xa) £ya, т.е. при любом расположении xa, на отрезке [х'; х"] точка графика функции f (x) лежит не выше соответствующей точки хорды.
2. Из курса математического анализа известны следующие условия выпуклости функции:
а) для того чтобы дифференцируемая на отрезке [а; b] функцияf (x) была выпуклой на этом отрезке, необходимо и достаточно, чтобы производная f' (x) не убывала на [а; b] ;
б) для того чтобы дважды дифференцируемая на отрезке [а; b] функция f (x) была выпуклой на этом отрезке, необходимо и достаточно, чтобы при всех хÎ [а; b] выполнялось неравенство f " (x) ³ 0.
3 Условие выпуклости для дифференцируемой на отрезке [а; b] функции f (x) означает, что на этом отрезке любая касательная к графику f (x) лежит не выше этого графика (рисунок 3).
Рисунок 3 - условие выпуклости
Уравнение касательной к графику f (х) в точке (x0,f (x0)), x0Î [а; b] имеет вид: у (х) =f (x0) +f’ (x0) (x-x0). По формуле конечных приращений для любогохÎ [а; b] имеем: f (х) =f (x0) +f’ (x) (x-x0), где точка x лежит междуx и x0. Поэтому
f (х) - у (х) = [f’ (x) - f’ (x0)] (x-x0), хÎ [а; b],
откуда с учетом того, что производная f’ (x) выпуклой функции не убывает, получаем:
f (x) -y (x) ³ 0 (2)
для всех хÎ [а; b].
4. Если f (x) - выпуклая дифференцируемая на отрезке [а; b] функция и в точке х* Î [а; b] выполняется равенство
f’ (x*) = 0 (3)
то х* является точкой глобального минимума f (х) на [а; b].
С учетом (3) уравнение касательной у (х) =f (х0) +f’ (х0) (х-х0) к графику f (x) для точки x0=х* принимает вид у (х) =f (x*). Поэтому из (2) следует, что f (x)
Благодаря свойству 3 выпуклых функций данное свойство приобретает простой геометрический смысл: поскольку касательная к графику f (x) в точке с абсциссой х* горизонтальна, а этот график расположен не ниже касательной, то х* есть точка минимума f (x) (рисунок 3).
Таким образом, равенство (3) для выпуклой дифференцируемой функции является не только необходимым условием глобального минимума (как для всякой дифференцируемой функции), но и его достаточным условием.
5. Можно показать, что всякая выпуклая непрерывная на отрезке [а; b] функция является и унимодальной на этом отрезке. Обратное, вообще говоря, неверно (рисунок 4).
Рисунок 4 - график унимодальной, но не выпуклой функции
Таким образом, кроме перечисленных свойств, выпуклые функции обладают также и всеми свойствами унимодальных функций.
Для решения задачи минимизации функции f (х) на отрезке [а; b] на практике, как правило, применяют приближенные методы. Они позволяют найти решение этой задачи с необходимой точностью в результате определения конечного числа значений функции f (х) и ее производных в некоторых точках отрезка [а; b]. Методы, использующие только значения функции и не требующие вычисления ее производных, называются прямыми методами минимизации.
Большим достоинством прямых методов является то, что от целевой функции не требуется дифференцируемости и, более того, она может быть не задана в аналитическом виде. Единственное, на чем основаны алгоритмы прямых методов минимизации, это возможность определения значений f (х) в заданных точках.
Рассмотрим наиболее распространенные на практике прямые методы поиска точки минимума. Самым слабым требованием на функцию f (х), позволяющим использовать эти методы, является ее унимодальность. Поэтому далее будем считать функцию f (х) унимодальной на отрезке [а; b].
Рассмотрим конкретные вычислительные алгоритмы решения задачи безусловной минимизации f (х) ®min, xÎEn, которые опираются только на вычисление значений функции f (х), т.е. прямые методы минимизации. Важно отметить, что для их применения не требуется дифференцируемость целевой функции и даже ее аналитическое задание. Нужно лишь иметь возможность вычислять или измерять значения f (х) в произвольных точках. Такие ситуации часто встречаются в практически важных задачах оптимизации.
Методы исключения отрезков
Пусть а < x1<х2<b. Сравнив значения f (x) в точках x1 и х2 (пробных точках), можно сократить отрезок поиска точки х *, перейдя к отрезку [а; х2], если
Чтобы относительное уменьшение отрезка на каждой итерации не зависело от того, какая из его частей исключается из дальнейшего рассмотрения, пробные точки следует располагать симметрично относительно середины исходного отрезка. В зависимости от способа выбора пробных точек получаются различные методы исключения отрезков. Далее проводится рассмотрение двух наиболее часто встречаемых.
Рисунок 5 - Уменьшение отрезка поиска точки минимума методами исключения отрезков
Суть метода заключается в том, что заданный отрезок [а; b] делится пополам:
Затем в каждой из половин отрезка [а; с] и [с; b] выбираются по одной точке x1 и х2, в них вычисляются значения функций, производится сравнение полученных значений, и в результате сравнения устанавливается отрезок, в котором минимума быть не может. Откинув его, продолжаем ту же процедуру с полученным отрезком до тех пор, пока вновь полученный отрезок не станет меньше по длине некоторой наперед заданной величины:
Скорость достижения
где d > 0 - малое число.
В конце вычислений по методу дихотомии в качестве приближенного значения х* берут середину последнего из найденных отрезков [а; b], убедившись предварительно, что достигнуто неравенство
Опишем алгоритм метода деления отрезка пополам.
Шаг 1. Определить середину отрезка и значения x1 и х2 по формулам (4). Вычислить f (x1) и f (x2).
Шаг 2. Сравнить f (x1) и f (x2). Если
Шаг 3. Найти достигнутую точность
Шаг 4. Положить
Замечания:
1. Число d из (4) выбирают на интервале (0; 2e) с учетом следующих соображений:
а) чем меньше d, тем больше относительное уменьшение длины отрезка на каждой итерации, т.е. при уменьшении d достигается более высокая скорость сходимости метода дихотомии;
б) при чрезмерно малом d сравнение значений f (x) в точках x1 и х2, отличающихся на величину d, становится затруднительным. Поэтому выбор d должен быть согласован с точностью определения f (x) и с количеством верных десятичных знаков при задании аргумента х.
Пусть
Рассмотрим такое симметричное расположение точек x1 и х2 на отрезке [а; b], при котором одна из них становится пробной точкой и на новом отрезке, полученном после исключения части исходного отрезка. Использование таких точек позволяет на каждой итерации метода исключения отрезков, кроме первой, ограничиться определением только одного значения f (x),так как другое значение уже найдено на одной из предыдущих итераций.