Смекни!
smekni.com

Формирование устных вычислительных навыков пятиклассников при изучении темы "Десятичные дроби" (стр. 4 из 9)

Игровой момент №4. На доске закреплены следующие карточки:

1,7 2,8 1,9 3,7 4,8 3,9
2,5 2,1 3,3 4,3 2,3 1,1

Учитель вызывает ученика и просит его в течение одной минуты назвать числа в порядке убывания. Следующий ученик должен за одну минуту называть числа в порядке возрастания.

Еще одна форма работы, которая очень нравится ученикам, - это тесты «Проверь себя сам». Цель использования данных тестов: развитие критичности мышления, самоконтроля, внимания. При составлении тестов используется картотека типичных ошибок. Приводим пример теста по теме «Действия с десятичными дробями» (сложение и вычитание).

1. Выполните сложение: 0,17+1

а. 1,17 б. 0,18 в. 0,27

2. Укажите, в каком случае сложение десятичных дробей выполнено правильно: 0,325+11,76

а.б. в.

3. Выполните вычитание: 2-0,63

а. 0,61 б. 1,37 в. 1,63

4. Найдите неизвестное число, для которого верно равенство х+3,75=6,9

а. 3,15 б. 10,65 в. 3,25

5.Найдите неизвестное число, для которого верно равенство17,96-у=5,34

а. 12,62 б. 35,44 в. 23,30

6. Найдите неизвестное число, для которого верно равенство 0,1+0,01+х+0,001=1

а. 0,999 б. 0,899 в. 0,889

7. Вычислите: 11,08+0,62-10,09+0,71

а. 2,32 б. 0,9 в. 1,32

8. Собственная скорость лодки равна 3,65 км/ч. Найдите скорость лодки против течения, если скорость течения реки равна 0,8 км/ч.

а. 4,45 км/ч б. 2,85 км/ч в. 3,57 км/ч

9. Скорость катера против течения равна 36,75 км/ч. Найдите скорость лодки по течению, если скорость течения реки равна 5,6 км/ч.

а. 42,35 км/ч б. 47,95 км/ч в. 31,15 км/ч

10. В первый день бригада собрала 4,5 тонн картофеля, во второй день на 0,8 тонн меньше, а в третий день на 2,25 тонн больше, чем во второй. Сколько тонн картофеля собрала бригада за три дня?

а. 14,15 т. б. 9,65 т. в. 10,45 т.

Ответы: 1-а. 2-в. 3-б. 4-а. 5-а. 6-в. 7-а. 8-б. 9-б. 10-а.

Следующим приемом является математический диктант – одна из форм контроля знаний. Первая цель при использовании данного вида работы – проверка уровня готовности учащихся к дальнейшей работе. Каждый учитель знает, как трудно дети воспринимают язык математики на слух У учащихся 5 – 6 классов основным является наглядно-образное мышление. Слышать и слушать учащихся нужно учить. Следовательно, вторая цель: научить детей слышать и понимать язык математики. Надо отметить, что такую работу нужно проводить систематически.

Составление математического диктанта:

1. составляется текст диктанта (с ответами на все задания), дается обоснование содержания;

2. указывается, на какое время рассчитан диктант;

3. описывается методика проведения (слуховой, зрительно-слуховой, зрительный, использование карточек, кодопозитивов, запись на магнитофон, использование переносных досок, индивидуальных досок и т. д.);

4. дается пример выполнения работы учеником.

Для иллюстрации приведем пример математического диктанта по теме «Десятичная запись дробных чисел».

1. Запишите в виде десятичной дроби:

;
;
;
;
.

2. Запишите в виде обыкновенной дроби или смешанного числа: 3,5; 18,04; 0,57; 0,005.

3. Запишите десятичную дробь 1,032. Сколько единиц в разряде сотых этой дроби?

4. Запишите десятичную дробь 135,19. Сколько единиц в разряде единиц этой дроби?

При такой форме работы можно использовать метод «закрытой доски»: доска закрыта; сидящие за партами должны выполнить задание самостоятельно; по окончании работы доска открывается, ученики проверяют свою работу и сами оценивают ее.

Исследовательские работы. Если проанализировать работу детей на уроках, то становится заметной общая тенденция: ученики почти не задают вопросов. Почему? В первую очередь потому, что им просто не интересно. Становится очевидным, что процесс обучения нужно сделать интересным для учеников. Нужно искусственно создать такую ситуацию, при которой ученики вовлекаются в процесс самостоятельного поиска и открытий новых знаний, даже если для этого придется использовать дополнительную литературу. Естественно, что на первом этапе эта работа направляется и контролируется учителем. Только такое обучение ведет к развитию творческих способностей детей и его можно назвать развивающим обучением.

Целью исследовательских работ является освоение системы и пути получения знаний посредством формирования познавательной деятельности ученика и развития его творческих способностей.

При выполнении исследовательских работ дети учатся ставить вопросы и находить на них ответы, сотрудничать с другими учениками, одновременно сохраняя свою индивидуальность, выходить из нестандартных ситуаций и многое другое.

Творческие задания и конкурсы – это написание сказок, задач, сценарием КВН и т. д. Цель этих задании заключается в формировании интереса к математике, развитии творческого мышления.

Далеко не все в учебном материале интересно для учащихся. Важным стимулом познавательного интереса является процесс творчества. При этом в процессе обучения школьник находит привлекательные стороны, сам процесс обучения несет в себе положительный заряд.

Хочется отметить, что выполняя творческие задания, дети проявляют большую изобретательность, пишут многостраничные рефераты, математические фокусы, сценарии сказок и КВНов, математические кроссворды, наглядные пособия и т. д. Примеры таких заданий имеются в учебнике «Математика» 5 класс, публикуются в газете «Математика».

Чем чаще проверяется и оценивается работа школьника, тем интереснее ему работать. Третий принцип можно сформулировать так: любая работа должна быть оценена.

Для этого устраиваются специальные уроки, на которых решаются задачи и разгадываются кроссворды, созданные учениками, организуются конкурсы работ. Дети высказывают свои впечатления, пишут рецензии. Лучшие работы (по мнению детей и учителей) вывешиваются на стенд. [10,6]

Еще одним средством формирования устных вычислительных навыков являются упражнения. Устные упражнения являются одной из важнейших составляющих развивающего обучения. Именно во время устной работы пятиклассник эффективно учится устанавливать связи между объектами, явлениями, сравнивать, обобщать их, развивает память, наряду с этим развивает и гибкость мышления, учится контролировать свои рассуждения. [20,128] Рассмотрим основные виды устных упражнений.

Нахождение значений математических выражений. Предлагается в той или иной форме математическое выражение, требуется найти его значение. Эти упражнения имеют много вариантов.

Можно предлагать числовые математические выражения и буквенные (выражение с переменной), при этом буквам придают числовые значения и находят числовое значение полученного выражения. Например:

1) Найдите разность чисел 8,5-7,2.

2) Найдите значение выражения а+в, если а=0,06, в=0,92.

Выражения могут предлагаться в разной словесной форме: из 8,5 вычесть 7,2; 8,5 минус 7,2; уменьшаемое 8,5, вычитаемое 7,2, найти разность; найти разность чисел 8,5 и 7,2; уменьшить 8,5 на 7,2 и т. д. Эти формулировки использует не только учитель, но и ученики.

Выражения могут включать одно действие и более чем одно действие.

Основное назначение упражнений на нахождение значений выражений – выработать у учащихся твердые вычислительные навыки. Вместе с тем упражнения на нахождение значений выражений способствуют и усвоению вопросов теории арифметических действий.

Сравнение десятичных дробей. Эти упражнения имеют ряд вариантов. Могут быть даны два выражения, а надо установить, равны ли их значения, а если не равны, то какое из них больше или меньше. Например, предлагается сравнить выражения и вместо звездочки поставить знак «>», «>» или «=»:

2,7+0,9 * 0,9+2,7 55,7+7,6 * 55,7+0,3

0,5·10 * 0,7·15 2,4·9+2,4 * 2,4·10

При этом выбор знака отношения может быть выполнен либо на основе нахождения значений данных выражений и их сравнения (0,5·10<0,7·15, т. к. 5<10,5), либо на основе применения соответствующих знаний: переместительного свойства сложения 2,7+0,9 * 0,9+2,7, изменения результатов действий в зависимости от изменения одного из компонентов 55,7+7,6 * 55,7+0,3 и др.

Могут предлагаться упражнения, у которых уже дан знак отношения и одно из выражений, а другое выражение надо составить либо дополнить. Например, предлагается закончить запись: 8,1·(1,3+0,2)=8,1·1,3+…

Можно предлагать упражнения на сравнение выражений с переменной: например, а-1,7* а-1,2.

Главная роль таких упражнений – способствовать усвоению теоретических знаний об арифметических действиях, их свойствах, о равенствах, неравенствах и др. Кроме того, упражнения на сравнение выражений помогают и выработке вычислительных навыков.

Решение уравнений. Уравнения можно предлагать в разных формах:

1) Из какого числа надо вычесть 10,4, чтобы получить 4,7?

2) Найдите неизвестное число: 7,3-х=7,3-1,8.

3) Я задумала число, умножила его на 1,2 и получила 3,6. Какое число я задумала?

Назначение таких упражнений – выработать умение решать уравнения, помочь усвоить связи между компонентами и результатами арифметических действий, способствовать выработке вычислительных навыков.

Решение задач. Предлагаются задачи как простые, так и составные.