Смекни!
smekni.com

Формування математичних понять в процесі викладання математики в основній школі (стр. 8 из 11)

8) якими б не були величини аі натуральне число n,існує така величина В,що nb = а(можливість ділення);

9) якими б не були величини а і b, існує таке натураль­не число п,що а < nb. Ця властивість називається аксіо­мою Архімеда;

10)якщо послідовності величин а1< а2< ... < b2< b1
такі, що bn - аn< сдля будь-якої величини с при досить
великому номері п,то існує єдина величина х,яка більша за
всі аn і менша за всі bn.

Стимулом для формування поняття «величина» є потреба взагалі порівнювати між собою різні предмети. Раніше (ще в дошкільному періоді) у дітей утворюються відносні по­няття «великий і маленький», «довгий і короткий» і т. д. і поступово виділяється те спільне, що лежить в основі поняття «величина», пізніше — утворюється поняття «до­рівнює», яке спочатку виникає в негативній формі «не більше» і «не менше». Це пояснюється тим, що практично нерівність предметів встановити набагато легше, ніж рів­ність.

Означення через аксіоми. Цей вид озна­чення розкриває зміст поняття непрямим шляхом через систему аксіом, які описують відношення, що зв'язують це поняття з рештою понять даної системи.

За допомогою системи аксіом визначаються найбільш широкі родові поняття геометрії через основні поняття: «точку», «пряму», «площину», «відстань» «належить» та ін. Решта понять визначається за допомогою цих понять.

У алгебрі через систему аксіом визначаються такі ши­рокі поняття, як група, кільце, поле, тіло, структура і т. д.

Усвідомлення учнями аксіоматичних означень можливе лише в старших класах, коли вони матимуть певне уявлен­ня про дедуктивну побудову курсу математики.

1.10. Структура означення.

Визначення через найближчий рід і видову відмінність складається з двох частин: визначуваного поняття і визначального поняття.

Визначуване поняття— поняття, істотні ознаки якого відшукуються, а визначаюче поняття— поняття, що відображає родовою і видовою ознаки. Родове поняття — більш загальне поняття, в об'єм якого входить визначуване поняття.

Так, визначення поняття «електродвигун» буде сформульовано таким чином: «Електродвигуном називається двигун (найближчий рід), що перетворює електричну енергію в механічну (видова відмінність)». Тут на першому місці — визначуване поняття «електродвигун», а на другому — що підпорядковує (родове) поняття «двигун», на третьому — видова відмінність (перетворюючий електричну енергію в механічну). Схемно структуру даного визначення можна представити так: електродвигун — двигун — перетворюючий електричну енергію в механічну.

Визначення, в яких вказані всі необхідніознаки, називаються повними визначеннями. Якщо у визначенні не вказані всі необхідні ознаки, воно називається неповним.

П р а в и л а в и з н а ч е н н я п о н я т ь.Логікою встановлений ряд вимог, яким повинні задовольняти визначення понять. Ці вимоги одержали в логіці назву правил визначення. Таких правил п'ять. Порушення одного з них приводить до помилок у визначенні і кінець кінцем до того, що зміст поняття і його об'єм виявляються невірно розкритими у визначенні. Розглянемо ці правила.

1. Визначення повинне бути відповідним, тобто об'єми визначуваного поняття і поняття, за допомогою якого визначається перше поняття, повинні бути однакові.

Приведене раніше визначення електродвигуна задовольняє цій вимозі. Приклад порушення даного правила — наступні визначення: «літак є машина» і «двигун є машина». Ці визначення надмірно широкі: об'єм визначального поняття («машина») ширше за визначуване поняття. Машин існує багато — це і двигуни, і генератори електричного струму, це і транспортні машини і т.д. Приведені приклади є прикладами надмірно широких визначень.

Інший приклад невідповідного визначення: «Динамометром називається прилад, головною частиною якого є проградуйована пружина». В цьому визначенні, навпаки, об'єм визначального поняття виявляється значно вужче визначуване (об'єм правої частини визначення виявляється вже об'єму лівої частини). Таке визначення дуже вузьке. Воно охоплює тільки пружинні динамометри. За межами визначення виявилися і гідравлічні динамометри і динамометри з тензометрическими датчиками.

Визначення буде вірним при умові, коли об'єм його лівої частини повністю співпадає з об'ємом правої частини. Цій вимозі задовольняє приведене визначення електродвигуна.

2. Родова ознака повинна указувати найближче вище поняття, не перескакуючи через нього.

Це правило забороняє брати при визначенні понять віддаленіший рід. Приклади порушення даного правила: «Парова турбіна є двигун, що перетворює енергію пари в механічну»; «Парта є меблі для сидіння учня». В першому визначенні замість найближчого роду «тепловий двигун» узятий віддалений рід «двигун». В другому визначенні замість найближчого родового поняття «класні меблі» узятий віддалений рід «меблі» (меблі взагалі).

3. Видовою відмінністю повинна бути ознака або група ознак, властивих тільки даному поняттю і відсутніх в інших поняттях, що відносяться до того ж роду.

Приклад порушення даного правила: «Пружинним динамометром називається прилад, що служить для вимірювання сили». Тут ознака — прилад для вимірювання сили — є загальним не тільки для пружинних динамометрів, але і для інших видів динамометрів, а треба вказати таку ознаку, яка властива тільки динамометрам даного вигляду.

4.Визначення не повинне бути тільки негативним. Негативне визначення не указує істотних ознак, значить, і не розкриває змісту поняття.

5.Всяке визначення повинне бути ясним.

Виконання вказаних правил має особливо важливе значення в учбовому процесі при формуванні понять у школярів. Дотримання вказаних правил визначення в підручниках і при поясненні матеріалу вчителем запобігає змішенню понять, сприяє освіті біля правильних понять, що вчаться, адекватно тих, що відображають явища і предмети реальної дійсності.

Тому знання правил визначення наукових понять необхідне кожному педагогу. На жаль, на практиці нерідко спостерігається порушення вказаних правил не тільки при поясненні матеріалу вчителями, але і в учбовій літературі. Визначення через найближчий рід і видову відмінність — найпоширеніший прийом визначення, але не єдиний.

Генетичне визначення — це таке визначення, коли указується на походження предмету, поняття якого визначається, на той спосіб, яким даний предмет створюється. Так визначається коло і ряд інших геометричних понять. Наприклад: «Коло є геометричне місце точок площини, рівновіддалених від однієї неї крапки (центру)».

У визначенні поняття, одержаному генетичним способом, також міститься вказівка на найближчий рід і чітко виражається видова відмінність від інших предметів даного роду, як і при першому способі визначення. У науці ми маємо справу в основному з першим способом визначення, тобто через найближчий рід і видову відмінність. Ці визначення ми і розглядатимемо надалі.

1.11. Основні вимоги до означень

Математичне означення — це таке формулювання, яке цілком зводить нове поняття до вже відомих понять тієї ж математичної галузі. Наприклад, означення числової функ­ції однієї змінної як відображення підмножини Dмно­жини R дійсних чисел на другу підмножину

є науко­вим означенням, бо в ньому, крім первинного поняття «мно­жина», всі поняття, що входять, були до цього означені.

При побудові математичної науки намагаються, щоб кожне нове поняття, що вводиться, було строго означено. З самого початку в кожній математичній науці вводиться група з невеликого числа первинних понять, які не означаються. Між цими первинними поняттями встановлюються закономірні обов'язкові відношення, які описуються за допомогою системи аксіом. Як приклад, можна навести аксіоматику натуральних чисел Пеано, до якої входить три первинні поняття: (число, одиниця, наступне число) і чотири аксіоми:

1) одиниця є натуральне число;

2) за кож­ним натуральним числом є єдине наступне натуральне число;

3) одиниця не є наступною ні за яким натуральним числом;

4) аксіома математичної індукції.

Обов'язковою вимогою логічної побудови кожної мате­матичної дисципліни є зведення числа первинних понять і аксіом до мінімуму. Проте це питання не визначається однозначно. З формального боку воно може бути довільним і залежить від вибраної системи викладу. Поняття, які були визнані за первинні в одній системі викладу, можуть бути в іншій системі такими, що підлягають означенню.

До означення ставлять низку вимог. Найважливіші з них такі.

1. Відсутність хибного кола. Це означає, що означуване поняття не повинне явно чи неявно містить у тому понятті, за допомогою якого воно означається. Наприклад, інколи намагаються сформулювати означення наближеного числа так: число, яке неточно, тобто з похибкою, виражає значення величини або деякого числа, називають наближеним. За іншим означенням, похибка – це різниця точного і наближеного чисел. Інший приклад, взаємно перпендикулярні прямі означають як прямі, що утворюють прямий кут. Водночас прямий кут означається як такий, у якого сторони взаємно перпендикулярні.

2. Відсутність омоніма. Це означає, що кожний термін (символ) має вживатися не більше ніж один раз як такий, що відповідає означуваному поняттю. У разі порушення цієї вимоги той самий термін (символ) позначатиме різні поняття.

3. Означення не повинно містити означуваних понять, які ще не означались.


РОЗДІЛ ІІ. ОСНОВНІ ЕТАПИ РОЗКРИТТЯ ЗМІСТУ МАТЕМАТИЧНОГО ОБЄКТА (ФОРМУВАННЯ ОЗНАЧЕННЯ).

1. Логічний аналіз структури означення (виділення терміна, роду, видових відмінностей і логічний зв'язок властивостей).

Питання про поняття, об'єкти і їх визначення дуже складний за змістом і може розглядатися з різних точок зору: логічної, змістовної (наочної), пізнавальної (гносеологічної) і ін., і через це навіть в різних методичних допомогах даються різні його аспекти. Ми вважаємо, що як основа необхідно вибрати логічну структуру з урахуванням математичних трактувань. Враховуючи, що навчання можливе тільки в діяльності, необхідно розглядати дії, адекватні видам визначень понять і об'єктів. Тому в зміст роботи входитиме актуалізація і систематизація знань по значенню операції «визначення понять», структурі визначень і їх видів.