Смекни!
smekni.com

Формула Бернулли, Пуассона. Коэффициент корреляции. Уравнение регрессии (стр. 3 из 4)

Отсюда следует, что различия между теоретическими и опытными частотами значимы и гипотезу о нормальном распределении следует отклонить..


51-60.

Для установления корреляционной зависимости между величинами

X и Y (где Y- случайная величина, X- неслучайная величина) проведены

эксперименты, результаты которых представлены в таблице.

Требуется: 1. Найти условные средние

и построить эмпирическую линию

регрессии Y по X (ломаную). 2. Найти уравнение регрессии Y по X

методом наименьших квадратов, принимая в качестве сглаживающей

линии параболу

затем построить ее на одном чертеже

с эмпирической линией регрессии. 3. Оценить тесноту корреляционной

зависимости Y по X. 4. Проверить адекватность уравнения регрессии Y по X.

51.

10 20 30 40 50
212220251270292 258258285314325 282290325326343 316330334361370 370330350375380

Решение

Найдем условные средние по у


Эмпирическая ломаная регрессии см рис 3(51)

2. Для определения неизвестных параметров a,b,c требуется решить

систему уравнений


Заполним вспомогательную таблицу

Y(
)
1 10 245 2450 100 1000 10000 24500 246,64
2 20 288 5760 400 8000 160000 115200 284,26
3 30 313,2 9396 900 27000 810000 281880 315,88
4 40 342,2 13688 1600 64000 2560000 547520 341,5
5 50 361 18050 2500 125000 6250000 902500 361,12
150 1549,4 49344 5500 225000 9790000 1871600

Получаем систему уравнений


Решение системы: a=-0.03; b=4.662; c=203.02

Получаем уравнение кривой


Подставляя в уравнение поочередно значения х, получаем соответствующие точки параболы, которые и наносим на график.(рис 3(51))

3. Найдем значение коэффициента корреляции


Отсюда можно сделать вывод что зависимость прямая сильная., тк

коэффициент близок к 1

55.

1 2 3 4 5
0.270.250.210.330.24 0.230.250.300.310.37 0.310.270.260.240.22 0.320.290.330.320.33 0.810.650.500.630.60

Решение

Найдем условные средние по у


Эмпирическая ломаная регрессии см рис 3(51)

2. Для определения неизвестных параметров a,b,c требуется решить

систему уравнений


Заполним вспомогательную таблицу

Y(
)
1 1 0.26 0.26 1 1 1 0.26 0.294
2 2 0.292 0.584 4 8 16 1.168 0.224
3 3 0.26 0.78 9 27 81 2.34 0.254
4 4 0.318 1.272 16 64 256 5.088 0.384
5 5 0.638 3.19 25 125 625 15.95 0.614
15 1.768 6.086 55 225 979 24.806

Получаем систему уравнений


Решая систему находим a=0.05,b=-0.22,c=0.464


Подставляя в уравнение поочередно значения х, получаем

соответствующие точки параболы, которые и наносим на график(рис.3(55).)

И в таблицу.(последний столбец)

3. Найдем значение коэффициента корреляции


Отсюда можно сделать вывод что зависимость прямая умеренная.

61-70. Найти выборочное уравнение прямой регрессии У на Х по данной корреляционной таблице.

61.

Y X
4 9 14 19 24 29
10 2 3 __ __ __ __ 5
20 __ 7 3 __ __ __ 10
30 __ __ 2 50 2 __ 54
40 __ __ 1 10 6 __ 17
50 __ __ __ 4 7 3 14
2 10 6 64 15 3 n=100

Выберем в качестве ложных нулей варианты по х и у с наибольшими частотами.

Перейдем к условным вариантам


Получим таблицу в условных вариантах.
V U
-3 -2 -1 0 1 2
-2 2 3 __ __ __ __ 5
-1 __ 7 3 __ __ __ 10
0 __ __ 2 50 2 __ 54
1 __ __ 1 10 6 __ 17
2 __ __ __ 4 7 3 14
2 10 6 64 15 3 n=100

Найдем выборочные средние

Найдем вспомогательные величины


Вычислим коэффициент корреляции


Перейдем теперь к исходным вариантам и составим уравнение регрессии


Уравнение регрессии


65.

Y X
10 15 20 25 30 35
6 4 2 __ __ __ __ 6
12 __ 6 2 __ __ __ 8
18 __ __ 5 40 5 __ 50
24 __ __ 2 8 7 __ 17
30 __ __ __ 4 7 8 19
4 8 9 52 19 8 n=100

Выберем в качестве ложных нулей варианты по х и у с наибольшими частотами.

Перейдем к условным вариантам


Получим таблицу в условных вариантах.