Смекни!
smekni.com

Статистические распределения и их основные характеристики (стр. 3 из 5)

Если вариантов - четное число, то медиана определяется как среднее из двух центральных вариантов, порядковые номера которых n/2 и (n/2) +1. Так, если в ряду распределения 100 единиц, то в центре стоят единицы с порядковыми номерами 100: 2=5 и 100: 2+1=51 и медиана должна быть получена как средняя из величин этих вариантов. Однако, если единиц в совокупности достаточно много и различия между величинами рядом стоящи вариантов небольшие, то можно считать медианой один из центральных вариантов с порядковым номером n/2. Так обычно делают, определяя медиану при четном числе членов ряда.

При определении медианы для интервальных рядов, вначале определяется медианный интервал, т.е. интервал, в котором лежит медиана. Он определяется также как и при определении медианы дискретного ряда, т.е. подсчитывают суммы накопленных частот.

,

Где x0 - нижняя граница медианного интервала,

h- величина интервала,

S-1 - накопленная частота интервала, предшествующего медианному,

fме - частота медианного интервала.

Моду и медиану можно определить графически. Медиана определяется по кумулянте. Моду - по гистограмме распределения.

4. Показатели колеблемости признака

В ходе анализа средних величин возникает вопрос степени колеблемости, степени вариации, скрывающейся за средней величиной. Для характеристики колеблемости варьирующего признака в изучаемой совокупности явлений применяются следующие показатели:

Размах вариации;

Среднее линейное отклонение;

Дисперсия;

Среднее квадратическое отклонение;

Коэффициент.

Размах вариации или размах колеблемости является наиболее простым измерителем вариации признака. Он равен разности между наибольшим (максимальным) и наименьшим (минимальным) значением варьирующего признака в данном ряду.

R = xmax- xmin.

При определении величины размаха вариации учитываются только два крайних значения признака, колеблемость же и распространенность (частота) его в этом показателе не находят отражения.

Среднее линейное отклонение является несколько более совершенной мерой вариации и характеризует колеблемость значений признака по всей совокупности явлений.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных отклонений варьирующего признака от его среднего значения. Так как алгебраическая сумма отклонений индивидуальных значений признака от средней арифметической всегда равна 0, то для расчета среднего линейного отклонения используется арифметическая сумма отклонений, т.е. суммируются абсолютные значения индивидуальных отклонений независимо от знака.

Среднее линейное отклонение

вычисляется по следующим формулам:

Для первичного ряда:

Для вариационного ряда:

Дисперсия s2 - средняя из квадратов отклонений вариантов значений признака от их средней величины. Дисперсия рассчитывается по следующим формулам:

Для первичного ряда:

для вариационного ряда:

Формулу для расчета дисперсии можно преобразовать:

,

т.е. дисперсия равна разности средней из квадратов и квадрата средней. Этой формулой пользуются машинной обработке исходных данных.

Дисперсия обладает рядом свойств, некоторые из них позволяют упростить ее вычисления:

дисперсия постоянной величины равна 0;

если все варианты значений признака уменьшить на одно и то же число, то дисперсия не уменьшится;

если все варианты значений признака уменьшить в одно и то же число раз (kраз), то дисперсия уменьшится в k2 раз.

Среднее квадратическое отклонение представляет собой среднюю, исчисленную на основе квадратов отклонений отдельных значений варьирующего признака от их среднего значения.

Среднее квадратическое отклонение s представляет собой корень квадратный из дисперсии:

Для первичного ряда:

Для вариационного ряда:

Размах вариации, среднее линейное и среднее квадратическое отклонение являются величинами именованными. Они имеют те же единицы измерения, что и индивидуальные значения признака.

Дисперсия и среднее квадратическое отклонение - наиболее широко применяемые показатели вариации. Объясняется это тем, что они входят в большинство теорем теории вероятности, служащих фундаментом математической статистики.

Расчет показателей вариации для предприятий, сгруппированных по среднегодовой стоимости основных фондов, показан в таблице.

Средняя годовая стоимость ОФ, млн. руб.
Число предприятийf Средина интервалаX’
3,7-4,6 2 4,15 8,30 -1,935 3,870 7,489
4,6-5,5 4 5,05 20, 20 -1,035 4,140 4,285
5,5-6,4 6 5,95 35,70 -0,135 0,810 0,109
6,4-7,3 5 6,85 34,25 +0,765 3,825 2,926
7,3-8,2 3 7,75 23,35 +1,665 4,995 8,317
ИТОГО 20 121,70 17,640 23,126

Среднее линейное отклонение:

Среднее квадратическое отклонение:

Дисперсия:

Так как средняя величина колеблемости средней годовой стоимости основных фондов составляет:

По среднему линейному отклонению - 0,822 млн. руб.

По среднему квадратическому - 1,075 млн. руб.

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает всю представляемую совокупность.

При сравнении колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях с различной величиной средней арифметической пользуются относительными показателями вариации. Эти показатели вычисляются как отношение абсолютных показателей вариации к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах, среднее линейное отклонение, среднее квадратическое отклонение, относительные показатели колеблемости:

Коэффициент осцилляции

-

отражает относительную колеблемость значений признака вокруг средней, крайних.

Относительное линейное отклонение

- характеризует долю усредненного значения абсолютных отклонений от средней величины.

Коэффициент вариации

Наиболее часто применяется показатель колеблемости - коэффициент вариации. Его используют не только для сравнительной оценки вариации, но и для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%.

Для рассмотренного примера:

Оставалась на коэффициенте вариации, можно сделать вывод, что по размеру прибыли совокупность является однородной.

Если статистическая совокупность разбита на группы по какому-либо признаку, то для оценки влияния различных факторов, определяющих колеблемость индивидуальных значений признака, можно воспользоваться разложением дисперсии на составляющие: на межгрупповую и внутригрупповую дисперсии.

Общая дисперсия характеризует вариацию признака, которая зависит от всех условий в данной совокупности и вычисляется:


где - общая средняя для всей изучаемой совокупности.

Межгрупповая дисперсия отражает вариацию изучаемого признака, которая возникает под влиянием признака фактора, положенного в основу группировки. Она характеризует колеблемость групповых (частных) средних около общей средней.

Межгрупповая дисперсия вычисляется по формуле:

,

где - средняя по отдельным группам,

- частота отдельных групп.

Средняя из внутригрупповых дисперсий характеризует случайную вариацию в каждой отдельной группе. Эта вариация возникает под влиянием других, не учитываемых факторов и не зависит от условия, положенного в основу группировки.