Она определяется по формуле:
Между общей дисперсией, средней из внутригрупповых дисперсий и межгрупповой d2 дисперсиями существует соотношение, определяемое правилом сложения дисперсий: .Рассмотрим правило сложение дисперсий на следующем примере.
По результатам маркетингового обследования туристических фирм, организующих недельные туры в Испанию в различные курортные города, получены следующие данные о вариации стоимости туров в сентябре 1997 г.
Месторасположение курорта | Число турист. фирм, fi | Средняя цена недельного тура, дол. | Дисперсия цен тура в группе |
Коста - Брава | 7 | 528,57 | 2728,04 |
Коста-дель-Соль | 6 | 588,33 | 8851,14 |
ИТОГО: | 13 | 556,16 | 5554,08 |
Вариация цен в обследованной группе туристических фирм, обусловленная различием в месторасположении курорта будет характеризоваться величиной межгрупповой дисперсии.
Средняя цена тура по всем фирмам составила:
$Тогда межгрупповая будет равна:
Вариация цен под влиянием всех прочих факторов, кроме месторасположения курорта, будет характеризоваться величиной средней из внутригрупповых дисперсий:
Вариация цен на недельные туры в Испанию, обусловленная влиянием всех факторов, формирующих уровень цен в заданной группе:
Правило сложения дисперсий имеет большую практическую значимость, т.к. позволяет выявить зависимость результатов от определяющих факторов соотношением межгрупповой и общей дисперсии - коэффициент детерминации.
Отсюда можно сделать вывод, что на 13,78% дисперсия цен на недельные туры объясняется различиями в месторасположении курорта, а на 86,22% - влиянием прочих факторов.
Таким образом, преобладающее влияние на вариацию цен недельных туров в Испанию оказывают прочие факторы.
В статистике наряду с показателем вариации количественного признака определяются показатели вариации альтернативного признака. Альтернативными являются признаками, которыми обладают одни единицы изучаемой совокупности и не обладают другие. Например: при, изучении качества изготовленной продукции можно разделить её на две группы годную и бракованную, т.е. в данном случае это два взаимно исключающих вариантов.
При статистическом выражении колеблемости альтернативных признаков наличие изучаемого признака обозначается 1, а его отсутствие - 0. Доля вариантов, обладающих изучаемым признаком обозначается р, а доля вариантов, не обладающих - q, следует
p + q = 1
Допустим, общее число единиц совокупности равно n. Число единиц обладающих признаком - f, тогда число единиц не обладающих дополнительными признаком будет равно n- f.
Учитывая изложенное
Значение переменнойЧастота повтора
f
n- f
Отсюда
Дисперсия
Средняя квадратичная равна
.Например в результате контроля из 1000 готовых изделий 20 - бракованных.
Отсюда
1 - соответствует бракованным изделиям
0 - годной продукции
Процент барка равен
.Тогда величина дисперсии
Если признак принимает больше двух значений, то оценка вариации равна
,где W- доля каждого признака.
Для получения приблизительного представления о форме распределения строят графики распределения (полигон и гистограмму). Число наблюдений, по которому строится эмпирическое распределение, обычно невелико. С увеличением числа наблюдений и одновременным уменьшением величины интервала зигзаги полигона начинают сглаживаться и в результате чего получается плавная кривая, которая называется кривой распределения.
Если кривая построена по данным наблюдения, то она называется эмпирической кривой, а если она отражает закономерность соотношения вариант и частот, то она называется теоретической кривой. Исследование закономерности (формы) распределения включает решение трёх последовательных задач:
выяснение общего характера распределения
выравнивание эмпирического распределения, которое состоит в том, что на основании эмпирического распределения строится кривая y=f (x)
проверка соответствия найденного теоретического распределения эмпирическому.
В практике статистического исследования встречаются различные распределения.
Однородные совокупности характеризуются, как правило, одновершинными распределениями. Многовершинность свидетельствует о неоднородности. Появление двух вершинной или асимметричной кривой означает, нарушение при изменении условий получения и обработки сведений в этом случае необходима перегруппировка данных.
Выявление общего характера распределения предполагает не только степень его однородности, а также вычисление показателей асимметрии и эксцесса.
Симметричным является распределение в котором частота любых двух вариантов равноотстоящих в обе стороны от центра распределения, равны между собой. Для симметричного распределения
.Поэтому показатель асимметрии, основан на соотношении показателей центра распределения: чем больше разница между средними (
) тем больше асимметрия ряда.Для сравнительного анализа степени асимметрии нескольких распределений рассчитывают относительный показатель AS.
ASможет быть положительным и отрицательным.
Положительная величина указывает на наличие правосторонней асимметрии
Отрицательный знак свидетельствует о наличии левосторонней асимметрии
(
)Другим показателем асимметрии, предложенный шведским математиком Линбергом, рассчитывают по формуле:
AS= П - 50,
где П - процент тех значений признака, которые превосходят по величине среднюю арифметическую.
Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка (в симметричном распределении его величина равна 0).
Моментом распределения называется средняя арифметическая тех или иных степеней отношения индивидуальных значений признака от определенной исходной величины.
,где А - величина, от которой определяется отклонение
a - степень отклонения (порядок момента)
В зависимости от того, что принимают за величину А, различают три вида моментов:
Начальные моменты получают при А=0
Центральные моменты получают при А=
Условные моменты maполучают при А, не равной средней арифметической и отличной от нуля:
В статистической практике пользуются моментами превого, второго, третьего и четвертого порядков.
Моменты распределения порядка | Начальные | Центральные | Условные |
I | |||
II |
Начальные моменты второго, третьего и четвертого порядков так же, как и условные моменты самостоятельного значения не имеют, а используют для упрощенного вычисления центральных моментов.
Например, используя начальные моменты первого и второго порядка можно вычислить дисперсию по формуле: