Смекни!
smekni.com

Статистические распределения и их основные характеристики (стр. 5 из 5)

.

Таким образом, показатель асимметрии может быть вычислен по формуле:

Применение этого показателя дает возможность не только определить степень асимметрии, но и ответить на вопрос о наличии или отсутствии асимметрии в распределении признака в генеральной совокупности.

Эта оценка делается при полюции след. показателя (сред. квадр. отклон)

Если отношение

,

а асимметрия несущественна и наличие может быть объяснено влиянием различных случайных обстоятельств.

Для симметричных распределений рассчитывается показатель эксцесса (островершинности).

Наиболее точным является показатель оснований на использовании центрального момента четвертого порядка.



На рисунке:

островершинное распределение (величина эксцесса положительная)

плосковершинное (величина эксцесса отрицательная)

кривая нормального распределения.

Эксцесс - выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения. В нормальном распределении:

.

Оценка показателей асимметрии и эксцесса позволяет сделать вывод о том, можно ли отнести данное эмпирическое распределение к типу кривых нормального распределения, которое имеет следующие особенности:

кривая симметрична относительно максимальной ординаты, которая равна x=M0=Mlи величина

кривая приближается к оси абсцисс, продолжаясь в обе стороны до бесконечности. Следовательно, чем больше значения отклоняются от

, тем реже они встречаются. Одинаковые по абсолютному значению, но противоположные по знаку, отклонения значений переменной х от
- равновероятны.

При

=const и при увеличении s кривая становится более пологой. При s=constс изменением
кривая не меняет свою форму, а лишь сдвигается вправо или влево по оси абсцисс.


s1<s2<s3

В промежутке

находится 68,3% всех значений признака.

В промежутке

находится 95,4% всех значений признака.

В промежутке

находится 99,7% всех значений признака.

Нормальное распределение возможно в том случае, когда на величину признака влияет большое число случайных причин. Действие этих причин независимо, и ни одна из причин не имеет преобладающего влияния над другим.