Смекни!
smekni.com

Численные методы (стр. 3 из 3)

2. Рекуррентный способ основан на том, что определитель равен сумме произведений элементов строки/столбца на их алгебраические дополнения. Т.о. задача вычисления определителя n-го порядка сводится к вычислению n определителей n-1 порядка.

Наиболее целесообразно раскладывать определитель по той строке/столбцу, которая содержит максимальное количество нулей. Алгебраическое дополнение 0-го элемента можно не вычислять.

Пусть дана система уравнений вида Ах=В

Если определитель А=0, то система может решений не иметь, либо иметь бесконечное множество решений.

Если определитель А≠0, то корни системы могут быть найдены следующим образом.

Пусть Ак-матрица, полученная из матрицы А путем замен к-го столбца на матрицу-столбец В. Тогда решение

.

МЕТОД ОБРАТНОЙ МАТРИЦЫ

Пусть дана система Ах=В и detA≠0.

Умножим обе части системы на А-1:

А-1*Ах=А-1*В→х=А-1

Способы нахождения обратной матрицы:

1. Способ основан на методе Гаусса.

Записать матрицу А, а рядом с ней единичную матрицу. Выполняя элементарные преобразования матрицы А, параллельно выполнять те же преобразования над единичной матрицей. Как только матрица А превратилась в единичную на месте исходной единичной матрицы будет обратная к матрице А.

2. Через алгебраические дополнения.

Составить матрицу алгебраических дополнений, в которой на месте aij элементов будут находиться Aij.

Разделить каждый элемент матрицы алгебраических дополнений на detA.

Транспонировать матрицу алгебраических дополнений, т.е. поменять местами элементы, симметричные относительно главной диагонали.